首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   18篇
  国内免费   1篇
地球物理   53篇
地质学   11篇
海洋学   3篇
  2019年   4篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2015年   2篇
  2014年   9篇
  2013年   6篇
  2012年   6篇
  2011年   6篇
  2010年   1篇
  2009年   4篇
  2008年   2篇
  2007年   6篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1993年   2篇
  1987年   1篇
  1986年   2篇
排序方式: 共有67条查询结果,搜索用时 78 毫秒
31.
This study examined the UV/H2O2 decolorization efficiency under high UV photon flux (intensity normalized by photon energy) irradiation; the incident UV was ranging from 3.13 × 10?8 to 3.13 × 10?6 einstein cm?2 s?1. The experimental results showed that complete decolorization of 20 mg L?1 methylene blue (MB) can be achieved within 5 s and 99% decolorization of 1000 mg L?1 MB can be achieved in 180 s under the best condition of high UV intensity UV/H2O2 process. To the best of our knowledge, UV/H2O2 decolorization process in such a short time has not been reported. The electrical energy per order of the process was 16.21 kWh m?3 order?1 and it is relatively economical compared with other advanced oxidation processes. The kinetics of decolorization follows pseudo‐first order. There is a linear relationship between rate constant and UV intensity, which indicates that increasing UV intensity does not cause decline in light utilization efficiency. The experiment related to initial substrate concentration shows decolorization rate of different substrate concentration (20–1000 mg L?1) are closed to each other. Besides, optimal H2O2 concentration, comparative study with low photon flux light, decolorization of other types of dyes and TOC removal were also studied.  相似文献   
32.
This study characterized sludge from an anoxic baffled reactor (ABR) used to treat textile dyeing wastewater. The process was run over 150 days. On day 152, five sludge samples were collected from compartments 1–5 of the ABR and a set of captive tests was conducted to investigate their particle size distributions (PSDs), dye biosorption and biodegradation properties, and dehydrogenase activity (DHA). The results indicated that the PSD of the five sludge samples from the ABR were similar. Methylene blue biosorption to the sludge samples followed the pseudo‐second‐order kinetic model and the actual biosorption process was controlled by external and intraparticle diffusion, simultaneously. After the sludge samples were cultivated for 24 h, the acid red GR dye removal efficiencies were 59.5, 68.3, 76.4, 61.5, and 65.4%, respectively. Eliminating dye biosorption, the dye biodegradation efficiencies were only 38.8, 46.3, 52.6, 48.3, and 46.0%, respectively. Furthermore, the DHA values were 28.2, 45.3, 56.5, 41.0, and 35.0 µg TF mL?1 h?1, respectively, and the DHA variation was in accordance with the dye biodegradation efficiency variation.  相似文献   
33.
The removal of Alphazurine FG (AF) dye from water by an electrocoagulation process has been studied. The effect of some operational parameters, such as anode material, current density, initial dye concentration, pH of solution, conductivity, and inter‐electrode distance, on the removal efficiency was investigated. Iron and aluminum were used as anodes in the electrocoagulation cell. It was found that the efficiency of the iron anode was better than that of the aluminum anode for AF removal. The factors that affected the removal efficiency were the current density and the initial dye concentration. The removal efficiency increased from about 35% at 25 A m–2 to about 97% at 100 A m–2, during 4 min of electrocoagulation. The results exhibited pseudo‐first‐order kinetics for AF removal by electrocoagulation. In addition, a mathematical model was successfully established for predicting the removal efficiency. A comparison between the model results and experimental data gave a high correlation coefficient (R2 = 0.9925), which indicates that the model is able to predict the removal efficiency of AF.  相似文献   
34.
35.
Degradation of an anthraquinone dye, disperse blue E‐4R, by zero‐valent iron (ZVI)/ozone (O3) was carried out in a series of laboratory‐scale experiments. The obtained results indicated that this method was much more effective than single ZVI or single O3 at removal of color, chemical oxygen demand, total organic carbon, and adsorbable organic halogen. The effect of several related operational parameters, including O3 dosage, zero valent iron dosage, temperature, pH value, and ZVI particle size were also discussed. Finally, we tried to decontaminate some actual samples with this method, which showed high treatment efficiency to the sample pretreated by conventional activated sludge.  相似文献   
36.
37.
38.
Mine waste dumps sited in the vicinity of mine workings typically consist of fragmented rock masses which in chemical terms may be defined as "complex systems", due to uncertainties in accurately simulating their behaviour, when water or aqueous solutions percolate through them. Remediation of the contamination problems created by abandoned mine dumps concerns many former mining areas from Europe to Africa. These dumps usually range in size from a few hundred thousand up to million cubic meters of rock defined as “waste” but which still contain significant amounts of potentially toxic elements. Although relatively small, they are often densely distributed in the territory impacting on surface and ground-water. This scenario is particularly applicable to the region of Sardinia, Italy, where several small dumps of uncommon sulphide minerals still exist on derelict mine sites. This paper reports on the results of a research project aimed at defining appropriate remedial measures of acid rock drainage. A dump of a Co–Ni–As–Sb complex sulphides mine was investigated and simulated in a laboratory leaching column. The column was irrigated with distilled water and a repetitive behaviour of the polluting elements concentrations in the effluents was observed for each run. Regardless of the campaign duration and the extent of the intervals between tests metal ions concentration peaks (250–50 ppm for Ni, 35–20 ppm for Co, 1.6–0.4 ppm for As, 20–15 ppm for Zn and 0.03–0.002 ppm for Sb) and acidic conditions (pH 2.5–3.5), on resumption of each irrigation, was noticed. As percolation continued, the ion concentrations decreased within the discharge limits after the replacement of only two pore volumes of the column material. This produces the conception that a sufficiently long rainfall period could remediate the polluting effects. Conception contradicted by field experiences: sporadic rainfall events, typical of the region, are not sufficient to completely leach out the metal ions. The repetitive nature of the leaching processes, both quantitatively and qualitatively, can be explained only by the activity of a microflora thriving in the rock mass even during long dry periods. Microbial tests and neutralisation campaigns confirmed this hypothesis and suggested that any effective remediation strategy must take into consideration the interaction between environmental factors with microbiological activities.  相似文献   
39.
The abiotic disturbance of urban wastewater discharge and its effects in the population structure, plant morphology, leaf nutrient content, epiphyte load and macroalgae abundance of Zostera noltii meadows were investigated in Ria Formosa coastal lagoon, southern Portugal using both univariate and multivariate analysis. Four sites were assessed, on a seasonal basis, along a gradient from a major Waste Water Treatment Works (WWTW) discharge to a main navigation channel. The wastewater discharge caused an evident environmental disturbance through the nutrient enrichment of the water and sediment, particularly of ammonium. Zostera noltii of the sites closest to the nutrient source showed higher leaf N content, clearly reflecting the nitrogen load. The anthropogenic nutrient enrichment resulted in higher biomass, and higher leaf and internode length, except for the meadow closest to the wastewater discharge (270 m). The high ammonium concentration (158–663 μM) in the water at this site resulted in the decrease of biomass, and both the leaf and internode length, suggesting a toxic effect on Z. noltii. The higher abundance of macroalgae and epiphytes found in the meadow closest to the nutrient source may also affect the species negatively. Shoot density was higher at the nutrient-undisturbed site. Two of the three abiotic processes revealed by Principal Component Analysis were clearly related to the WWTW discharge, a contrast between water column salinity and nutrient concentration and a sediment contrast between both porewater nutrients and temperature and redox potential. A multiple regression analysis showed that these abiotic processes had a significant effect on the biomass-density dynamics of meadows and on the overall size of Z. noltii plants, respectively. Results show that the wastewater discharge is an important source of environmental disturbance and nutrients availability in Ria Formosa lagoon affecting the population structure, morphology and N content of Z. noltii. This impact is spatially restricted to areas up to 600 m distant from the WWTW discharge, probably due to the high water renewal of the lagoon.  相似文献   
40.
In this research, the efficiency of electrocoagulation treatment process using aluminum electrodes to treat synthetic wastewater containing Reactive Red198 (RR198) was studied. The effects of parameters such as voltage, time of reaction, electrode connection mode, initial dye concentration, electrolyte concentration, and inter electrode distance on dye removal efficiency were investigated. In addition, electrical energy consumption, electrode consumption, and operating cost at optimum condition have been investigated. The results showed that dye and chemical oxygen demand removals were 98.6 and 84%, respectively. Electrode consumption, energy consumption and operating cost were 0.052 kg/m3, 1.303 kWh/m3 and 0.256 US$/m3, respectively. Dye removal kinetic followed first order kinetics. It can be concluded that electrocoagulation process by aluminum electrode is very efficient and clean process for reactive dye removal from colored wastewater.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号