首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1963篇
  免费   256篇
  国内免费   263篇
测绘学   492篇
大气科学   282篇
地球物理   583篇
地质学   521篇
海洋学   215篇
天文学   22篇
综合类   167篇
自然地理   200篇
  2024年   5篇
  2023年   13篇
  2022年   41篇
  2021年   59篇
  2020年   81篇
  2019年   61篇
  2018年   81篇
  2017年   92篇
  2016年   88篇
  2015年   83篇
  2014年   106篇
  2013年   130篇
  2012年   137篇
  2011年   109篇
  2010年   93篇
  2009年   96篇
  2008年   114篇
  2007年   130篇
  2006年   116篇
  2005年   110篇
  2004年   86篇
  2003年   79篇
  2002年   79篇
  2001年   52篇
  2000年   55篇
  1999年   48篇
  1998年   44篇
  1997年   48篇
  1996年   41篇
  1995年   23篇
  1994年   25篇
  1993年   29篇
  1992年   15篇
  1991年   24篇
  1990年   15篇
  1989年   15篇
  1988年   13篇
  1987年   16篇
  1986年   8篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   4篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
  1972年   1篇
  1954年   2篇
排序方式: 共有2482条查询结果,搜索用时 93 毫秒
41.
A data reduction method is described for determining platinum-group element (PGE) abundances by inductively coupled plasma-mass spectrometry (ICP-MS) using external calibration or the method of standard addition. Gravimetric measurement of volumes, the analysis of reference materials and the use of procedural blanks were all used to minimise systematic errors. Internal standards were used to correct for instrument drift. A linear least squares regression model was used to calculate concentrations from drift-corrected counts per second (cps). Furthermore, mathematical manipulations also contribute to the uncertainty estimates of a procedure. Typical uncertainty estimate calculations for ICP-MS data manipulations involve: (1) Carrying standard deviations from the raw cps through the data reduction or (2) calculating a standard deviation from multiple final concentration calculations. It is demonstrated that method 2 may underestimate the uncertainty estimate of the calculated data. Methods 1 and 2 do not typically include an uncertainty estimate component from a regression model. As such models contribute to the uncertainty estimates affecting the calculated data, an uncertainty estimate component from the regression must be included in any final error calculations. Confidence intervals are used to account for uncertainty estimates from the regression model. These confidence intervals are simpler to calculate than uncertainty estimates from method 1, for example. The data reduction and uncertainty estimation method described here addresses problems of reporting PGE data from an article in the literature and addresses both precision and accuracy. The method can be applied to any analytical technique where drift corrections or regression models are used.  相似文献   
42.
非线性地球物理反演方法:回顾与展望   总被引:19,自引:13,他引:19  
自20世纪90年代以来,非线性地球物理反演方法已走向成熟,这些方法包括线性化迭代法,仿真淬火法,遗传算法及联合反演方法等,线性化迭代反演基于开放物理系统状态发生相变的原理,要进一步改善模型参数化的技术和迭代过程的自组织;仿真淬火法与遗传算法基于自然过程的指数率或生物演化的优生率,可以相互结合以提高解估计的分辨率与置信度;联合反演要结合岩石物理性质的统计规律,才能取得兼容地质与综合方法的应用效果,地球动力学中的反问题不仅涉及偏微分方程系数项的求解,而且涉及初始条件或初始边界的求解,对地球动力学作用过程研究特别重要。  相似文献   
43.
根据位于巩乃斯河谷的天山积雪雪崩研究站近30年来的年最大雪深、月平均气温、月降水量观测记录,用平均差值法、最小二乘法、自回归滑动平均法检验了天山西部中山带积雪、冷季降水、冷季平均气温的变化趋势,结果表明,天山西部中山带积雪呈增加趋势,近30年来年平均增加1.43%,与青藏高原、南极大陆及格陵兰冰盖表面积雪积累增加相一致。天山西部中山带冷季气温和降水的变化趋势也是增加的,其中冷季降水平年平均增加0.12%,而冷季气温升高了0.8℃,积雪与冷季气温之间存在着弱的负相关关系,而与冷季降水呈显著的正相关关系。积雪的增加主要是因为气候变暖引起的冷季降水的增加对积雪增加的贡献大于由于冷季气温升高而造成积雪减少的贡献的结果。  相似文献   
44.
45.
Decoupled seismic analysis of an earth dam   总被引:2,自引:0,他引:2  
The seismic stability of an earth dam is evaluated via the decoupled displacement analysis using the accelerograms obtained by ground response analysis to compute the earthquake-induced displacements. The response analysis of the dam is carried out under both 1D and 2D conditions, incorporating the non-linear soil behaviour through the equivalent linear method. Ten artificial and five real accelerograms were used as input motions and four different depths were assumed for the bedrock.1D and 2D response analyses were in a fair agreement with the exception of the top third of the dam where only a 2D modelling of the problem could ensure that the acceleration field is properly described. The acceleration amplification ratio obtained in the 2D analyses was equal to about 2 in all the cases considered, consistently with data from real case histories.The maximum permanent displacements computed by the sliding block analysis were small, being less than 10% of the service freeboard; a satisfactory performance of the dam can then be envisaged for any of the seismic scenarios considered in the analyses.  相似文献   
46.
Investigated is the accuracy in estimating the response of asymmetric one‐storey systems with non‐linear viscoelastic (VE) dampers by analysing the corresponding linear viscous system wherein all non‐linear VE dampers are replaced by their energy‐equivalent linear viscous dampers. The response of the corresponding linear viscous system is determined by response history analysis (RHA) and by response spectrum analysis (RSA) extended for non‐classically damped systems. The flexible and stiff edge deformations and plan rotation of the corresponding linear viscous system determined by the extended RSA procedure is shown to be sufficiently accurate for design applications with errors generally between 10 and 20%. Although similar accuracy is also shown for the ‘pseudo‐velocity’ of non‐linear VE dampers, the peak force of the non‐linear VE damper cannot be estimated directly from the peak damper force of the corresponding linear viscous system. A simple correction for damper force is proposed and shown to be accurate (with errors not exceeding 15%). For practical applications, an iterative linear analysis procedure is developed for determining the amplitude‐ and frequency‐dependent supplemental damping properties of the corresponding linear viscous system and for estimating the response of asymmetric one‐storey systems with non‐linear VE dampers from the earthquake design (or response) spectrum. Finally, a procedure is developed for designing non‐linear supplemental damping systems that satisfy given design criteria for a given design spectrum. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
47.
The non‐linear analysis of single‐degree‐of‐freedom (SDOF) systems provides the essential background information for both strength‐based design and displacement‐based evaluation/design methodologies through the development of the inelastic response spectra. The recursive solution procedure called the piecewise exact method, which is efficiently used for the response analysis of linear SDOF systems, is re‐formulated in this paper in a unified format to analyse the non‐linear SDOF systems with multi‐linear hysteresis models. The unified formulation is also capable of handling the P‐delta effect, which generally involves the negative post‐yield stiffness of the hysteresis loops. The attractiveness of the method lies in the fact that it provides the exact solution when the loading time history is composed of piecewise linear segments, a condition that is perfectly satisfied for the earthquake excitation. Based on simple recursive relationships given for positive, negative and zero effective stiffnesses, the unified form of the piecewise exact method proves to be an extremely powerful and probably the best tool for the SDOF inelastic time‐history and response spectrum analysis including the P‐delta effect. A number of examples are presented to demonstrate the implementation of the method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
48.
This article documents the analytical study and feasibility of placing a tuned mass damper in the form of a limber rooftop moment frame atop relatively stiff structures to reduce seismic acceleration response. Six existing structures were analytically studied using a suite of time history and response spectra records. The analyses indicate that adding mass in conjunction with a limber frame results in an increase in the fundamental period of each structure. The fundamental period increase generally results in a decrease in seismic acceleration response for the same time history and response spectra records. Owing to the limber nature of the rooftop frames, non‐linear analysis methods were required to evaluate the stability of the rooftop tuned mass damper frame. The results indicate the addition of a rooftop tuned mass damper frame reduces the seismic acceleration response for most cases although acceleration response can increase if the rooftop frame is not tuned to accommodate the specific structure's dynamic behaviour and localized soil conditions. Appropriate design of the rooftop tuned mass damper frame can result in decreased seismic acceleration response. This translates to safer structures if used as a retrofit measure or a more economical design if used for new construction. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
49.
A method, based on the Hilbert–Huang spectral analysis, has been proposed by the authors to identify linear structures in which normal modes exist (i.e., real eigenvalues and eigenvectors). Frequently, all the eigenvalues and eigenvectors of linear structures are complex. In this paper, the method is extended further to identify general linear structures with complex modes using the free vibration response data polluted by noise. Measured response signals are first decomposed into modal responses using the method of Empirical Mode Decomposition with intermittency criteria. Each modal response contains the contribution of a complex conjugate pair of modes with a unique frequency and a damping ratio. Then, each modal response is decomposed in the frequency–time domain to yield instantaneous phase angle and amplitude using the Hilbert transform. Based on a single measurement of the impulse response time history at one appropriate location, the complex eigenvalues of the linear structure can be identified using a simple analysis procedure. When the response time histories are measured at all locations, the proposed methodology is capable of identifying the complex mode shapes as well as the mass, damping and stiffness matrices of the structure. The effectiveness and accuracy of the method presented are illustrated through numerical simulations. It is demonstrated that dynamic characteristics of linear structures with complex modes can be identified effectively using the proposed method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
50.
Predictors (or estimates) of seismic structural demands that are less computationally time‐consuming than non‐linear dynamic analysis can be useful for structural performance assessment and for design. In this paper, we evaluate the bias and precision of predictors that make use of, at most, (i) elastic modal vibration properties of the given structure, (ii) the results of a non‐linear static pushover analysis of the structure, and (iii) elastic and inelastic single‐degree‐of‐freedom time‐history analyses for the specified ground motion record. The main predictor of interest is an extension of first‐mode elastic spectral acceleration that additionally takes into account both the second‐mode contribution to (elastic) structural response and the effects of inelasticity. This predictor is evaluated with respect to non‐linear dynamic analysis results for ‘fishbone’ models of steel moment‐resisting frame (SMRF) buildings. The relatively small number of degrees of freedom for each fishbone model allows us to consider several short‐to‐long period buildings and numerous near‐ and far‐field earthquake ground motions of interest in both Japan and the U.S. Before doing so, though, we verify that estimates of the bias and precision of the predictor obtained using fishbone models are effectively equivalent to those based on typical ‘full‐frame’ models of the same buildings. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号