首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   9篇
  国内免费   20篇
大气科学   33篇
地球物理   120篇
地质学   34篇
海洋学   5篇
天文学   2篇
自然地理   14篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   10篇
  2008年   25篇
  2007年   14篇
  2006年   13篇
  2005年   10篇
  2004年   6篇
  2003年   5篇
  2002年   4篇
  2001年   7篇
  2000年   7篇
  1999年   16篇
  1998年   9篇
  1997年   14篇
  1996年   11篇
  1995年   13篇
  1994年   1篇
  1993年   9篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1988年   2篇
  1987年   1篇
  1983年   1篇
排序方式: 共有208条查询结果,搜索用时 15 毫秒
201.
The behaviour of a magma plumbing system during a cycle of volcanic edifice growth is investigated with a simple physical model. Loading by an edifice at Earth's surface changes stresses in the upper crust and pressures in a magma reservoir. In turn, these changes affect magma ascent from a deep source to the reservoir and from reservoir to Earth's surface. The model plumbing system is such that a hydraulic connection is maintained at all times between the reservoir and a deep magma source at constant pressure. Consequently the input rate of magma into the reservoir is predicted by the model rather than imposed as an input parameter. The open hydraulic connection model is consistent with short-term measurements of deformation and seismicity at several active volcanoes. Threshold values for the reservoir pressure at the beginning and end of eruption evolve as the edifice grows and lead to long-term changes of eruption rate. Depending on the dimensions and depth of the reservoir, the eruption rate follows different trends as a function of time. For small reservoirs, the eruption rate initially increases as the edifice builds up and peaks at some value before going down. The edifice size at the peak eruption rate provides a constraint on the reservoir shape and depth. Edifice decay or destruction leads to resumption of eruptive activity and a new eruption cycle. A simple elastic model for country rock deformation is valid over a whole eruptive cycle extending to the cessation of eruptive activity. For large reservoirs, an elastic model is only valid over part of an eruptive cycle. Long-term stress changes eventually lead to reservoir instability in the form of either roof collapse and caldera formation or reservoir enlargement in the horizontal direction.  相似文献   
202.
 Experimental studies have been performed to evaluate pre-explosive water–melt mixes with respect to explosive volcanic molten–fuel–coolant interaction (MFCI), i.e., phreatomagmatic explosion. Remolten ultrabasic volcanic rock was used as a magma simulant. Measurement of the explosion intensity was used to determine optimal premixing conditions. A well-defined optimal range was found for the hydrodynamic mixing energy (differential flow speed of 4.2 m/s), as well as for the water/melt mass ratio (0.03 to 0.04) under experimental conditions. The mass flux of water had a minor influence on the explosion intensity. Additionally, transparent mixing experiments with silicon oil and inked water were carried out. They indicate a direct dependence of the pre-explosive water-melt interface area on the explosion intensity. The experimental results show that the contact conditions of water and melt required for explosive MFCI may easily be established in natural volcanic systems. Thus, explosive MFCI is a probable mechanism of explosive volcanism. Received: 23 July 1996 / Accepted: 16 December 1996  相似文献   
203.
Scaling vesicle distributions and volcanic eruptions   总被引:1,自引:1,他引:0  
Models of coalescence-decompressive expansion of the later stages of bubble growth predict that for diverse types of volcanic products the vesicle number densities (n(V)) are of the scaling form where V is the volume of the vesicles and B3 the 3-dimensional scaling (power law) exponent. We analyze cross sections of 9 pumice samples showing that over the range of bubble sizes from 10 m to 3 cm, they are well fit with B30.85. We show that to within experimental error, this exponent is the same as that reported in the literature for basaltic lavas, and other volcanic products. The importance of the scaling of vesicle distributions is highlighted by the observation that they are particularly effective at packing bubbles allowing very high vesicularities to be reached before the critical percolation threshold, a process which—for highly stressed magmas—would trigger explosion. In this way the scaling of the bubble distributions allows them to be key actors in determining the rheological properties and in eruption dynamics.Editorial responsibility: D. Dingwell  相似文献   
204.
A series of large hydrothermal eruptions occurred across the Waiotapu geothermal field at about the same (prehistoric) time as the ~AD1315 Kaharoa rhyolite magmatic eruptions from Tarawera volcano vents, 10–20 km distant. Triggering of the Waiotapu hydrothermal eruptions was previously attributed to displacement of the adjacent Ngapouri Fault. The Kaharoa rhyolite eruptions are now recognised as primed and triggered by multiple basalt intrusions beneath the Tarawera volcano. A ~1000 t/day pulse of CO2 gas is recorded by alteration mineralogy and fluid inclusions in drill core samples from Waiotapu geothermal wells. This CO2 pulse is most readily sourced from basalt intruded at depth, and although not precisely dated, it appears to be associated with the Waiotapu hydrothermal eruptions. We infer that the hydrothermal eruptions at Waiotapu were primed by intrusion of the same arrested basalt dike system that drove the rhyolite eruptions at Tarawera. This dike system was likely similar at depth to the dike that generated basalt eruptions from a 17 km-long fissure that formed across the Tarawera region in AD1886. Fault ruptures that occurred in the Waiotapu area in association with both the AD1886 and ~AD1315 eruptions are considered to be a result, rather than a cause, of the dike intrusion processes.Editorial responsibility: J. Donnelly-Nolan  相似文献   
205.
 The Minoan eruption of Santorini was a large-magnitude natural event. However, in terms of scale it ranks smaller in erupted volume and eruptive intensity than the historical eruption of Tambora in 1815 AD, and smaller in sulphur emission and, by inference, climatic effects than both the Tambora and Mt. Pinatubo, 1991, eruptions. Eruption statistics for the past 2000 years indicate that Minoan-size eruptions typically occur at a rate of several per thousand years. Eruptions resulting in a Minoan-scale injection of sulphur to the stratosphere occur far more frequently – at a rate of one or two per century. Inferences of massive sociological, religious and political impacts from such eruptions owe more to mythology than reality. Received: 28 November 1995 · Accepted: 9 January 1996  相似文献   
206.
The Zaragoza ignimbrite and two enclosing rhyodacite pumice fall layers were emplaced during the 15 km3 (DRE), ∼0.1 Ma Zaragoza eruption from Los Humeros volcanic centre, 180 km east of Mexico City. The ignimbrite comprises several massive flow-units, the largest of which locally exceeds 20 m in thickness and is regionally traceable. It comprises massive lapilli-ash with vertical elutriation pipes, and has a fine-grained inverse-graded base and a pumice concentration zone at the top. It also exhibits an unusual gradational ‘double’ vertical compositional zonation that is widely traceable. A basal rhyodacitic (67.6–69 wt% SiO2) zone grades up via a mixed zone into a central andesitic (58–62 wt% SiO2) zone, which, in turn, grades up into an upper rhyodacitic (67.6–69 wt% SiO2) zone. Zoning is also defined by vertical variations in lithic clast populations. We infer that pyroclastic fountaining fed initially rhyodacite pumice clasts to a sustained granular fluid-based pyroclastic density current. The composition of the pumice clasts supplied to the current then gradually changed, first to andesite and then back to rhyodacite. Inverse grading at the base of the massive layer may reflect initial waxing flow competence. The pumice concentration at the top of the massive layer is entirely rhyodacitic and was probably deposited during waning stages of the current, when the supply of andesitic pumice clasts had ceased. The return to rhyodacitic composition may have been the result of eruption-conduit modification during collapse of Los Potreros caldera, marked in the ignimbrite by a widespread influx of hydrothermally altered lithic blocks, and/or a decrease in draw-up depth from a compositionally stratified magma chamber as the eruptive mass flux waned. The massive layer of ignimbrite thins locally to less than 2 m, yet it still shows the double zonation. Correlation of the zoning suggests that the thin massive layer is stratigraphically condensed, and aggraded relatively slowly during the same time interval as did the much thicker (≤50 m) massive layer.Editorial responsibility: J McPhie  相似文献   
207.
The shrinkage of the Lisan Lake (LL) to form the recent Dead Sea (DS) was mainly a result of the reduction of the catchment area from around 157,000 km2 during Late Pleistocene to 43,000 km2 presently. The reduction in the catchment area resulted from the eruption and spread of the basalt flows of Jabal Arab-Druz (JAD), which together with the resulting deposition of thick rock debris and gravels occupied the drainage system. The filling of the pre-basalt drainage system, which used to feed the Dead Sea, with basalts and alluvial sediments blocked the inflows from reaching the Dead Sea. Local base levels along the basalt flow boarders such as Azraq Oasis, Sirhan Basin and Damascus Oasis, and numerous pools and mud flats were created.  相似文献   
208.
利用欧洲中期天气预报中心(ECMWF)提供的0.5°×0.5° ERA-Interim再分析资料,麦迪逊-威斯康星大学气象卫星研究所(CIMSS)提供的地球静止环境业务卫星(GOES-EAST)红外卫星云图和天气预报模式(WRF)的模拟结果,对2018年1月3—6日发生在北大西洋上的一个具有“T”型(T-bone)锋面结构的超强爆发性气旋进行分析。该爆发性气旋在较暖的湾流上空生成,沿海表面温度大值区向东北方向快速移动,生成后6 h内爆发性发展,24 h中心气压降低48.7 hPa。高空槽加深、涡度平流加强和低层较强的大气斜压性为气旋快速发展提供了有利的环流背景场。由于气旋发展迅速,低层相对涡度急剧增大,低压中心南部来自西北方向的干冷空气随气旋式环流快速向东推进,与东南暖湿气流汇合,锋生作用较强。较暖的洋面对西北冷空气的加热作用使得交汇的冷、暖空气温度梯度较小。减弱东移的冷锋与暖锋逐渐形成近似垂直的“T”型结构。用Zwack-Okossi方程诊断分析表明,非绝热加热、温度平流和正涡度平流是该爆发性气旋发展的主要影响因子。气旋初始爆发阶段,西北冷空气进入温暖的洋面,海洋对上层大气感热输送和潜热释放较强,非绝热加热对气旋快速发展有较大贡献。气旋进一步发展,“T”型锋面结构显著,温度平流净贡献较大,对气旋的发展和维持起重要作用。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号