首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   678篇
  免费   24篇
  国内免费   3篇
测绘学   3篇
大气科学   1篇
地球物理   97篇
地质学   4篇
海洋学   2篇
天文学   597篇
自然地理   1篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   1篇
  2019年   7篇
  2018年   4篇
  2017年   4篇
  2016年   2篇
  2015年   6篇
  2014年   8篇
  2013年   22篇
  2012年   9篇
  2011年   9篇
  2010年   26篇
  2009年   59篇
  2008年   61篇
  2007年   79篇
  2006年   52篇
  2005年   55篇
  2004年   42篇
  2003年   38篇
  2002年   31篇
  2001年   25篇
  2000年   38篇
  1999年   36篇
  1998年   48篇
  1997年   8篇
  1996年   9篇
  1995年   6篇
  1994年   7篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
排序方式: 共有705条查询结果,搜索用时 15 毫秒
41.
The origin of large scale magnetic fields in astrophysical rotators, and the conversion of gravitational energy into radiation near stars and compact objects via accretion have been subjects of active research for a half century. Magnetohydrodynamic turbulence makes both problems highly nonlinear, so both subjects have benefitted from numerical simulations.However, understanding the key principles and practical modeling of observations warrants testable semi‐analytic mean field theories that distill the essential physics. Mean field dynamo (MFD) theory and alpha‐viscosity accretion disc theory exemplify this pursuit. That the latter is a mean field theory is not always made explicit but the combination of turbulence and global symmetry imply such. The more commonly explicit presentation of assumptions in 20th century textbook MFDT has exposed it to arguably more widespread criticism than incurred by 20th century alpha‐accretion theory despite complementary weaknesses. In the 21st century however, MFDT has experienced a breakthrough with a dynamical saturation theory that consistently agrees with simulations. Such has not yet occurred in accretion disc theory, though progress is emerging. Ironically however, for accretion engines, MFDT and accretion theory are presently two artificially uncoupled pieces of what should be a single coupled theory. Large scale fields and accretion flows are dynamically intertwined because large scale fields likely play a key role in angular momentum transport. I discuss and synthesize aspects of recent progress in MFDT and accretion disc theory to suggest why the two likely conspire in a unified theory (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
42.
In this study we provide the first numerical demonstration of the effects of turbulence on the mean Lorentz force and the resulting formation of large‐scale magnetic structures. Using three‐dimensional direct numerical simulations (DNS) of forced turbulence we show that an imposed mean magnetic field leads to a decrease of the turbulent hydromagnetic pressure and tension. This phenomenon is quantified by determining the relevant functions that relate the sum of the turbulent Reynolds and Maxwell stresses with the Maxwell stress of the mean magnetic field. Using such a parameterization, we show by means of two‐dimensional and three‐dimensional mean‐field numerical modelling that an isentropic density stratified layer becomes unstable in the presence of a uniform imposed magnetic field. This large‐scale instability results in the formation of loop‐like magnetic structures which are concentrated at the top of the stratified layer. In three dimensions these structures resemble the appearance of bipolar magnetic regions in the Sun. The results of DNS and mean‐field numerical modelling are in good agreement with theoretical predictions. We discuss our model in the context of a distributed solar dynamo where active regions and sunspots might be rather shallow phenomena (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
43.
The effects, hitherto not treated, of the temperature and the number density gradients, both in the parallel and the perpendicular direction to the magnetic field, of O VI ions, on the MHD wave propagation characteristics in the solar North Polar Coronal Hole are investigated. We investigate the magnetosonic wave propagation in a resistive MHD regime where only the thermal conduction is taken into account. Heat conduction across the magnetic field is treated in a non‐classical approach wherein the heat is assumed to be conducted by the plasma waves emitted by ions and absorbed at a distance from the source by other ions. Anisotropic temperature and the number density distributions of O VI ions revealed the chaotic nature of MHD standing wave, especially near the plume/interplume lane borders. Attenuation length scales of the fast mode is shown not to be smoothly varying function of the radial distance from the Sun (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
44.
45.
We present results from numerical simulations of the interaction of internal gravity waves (IGW) with a magnetic field. In accordance with the dispersion relation governing IGW in the presence of magnetism and rotation, when the IGW frequency is approximately that of the Alfvén frequency, strong reflection of the wave occurs. Such strong reflection markedly changes the angular momentum transport properties of the waves. In these simple models a strong, time-independent shear layer develops, in contrast to the oscillating shear layer that develops in the purely hydrodynamic case.  相似文献   
46.
The term 'dynamo' means different things to the laboratory fusion plasma and astrophysical plasma communities. To alleviate the resulting confusion and to facilitate interdisciplinary progress, we pinpoint conceptual differences and similarities between laboratory plasma dynamos and astrophysical dynamos. We can divide dynamos into three types: 1. magnetically dominated helical dynamos which sustain a large-scale magnetic field against resistive decay and drive the magnetic geometry towards the lowest energy state, 2. flow-driven helical dynamos which amplify or sustain large-scale magnetic fields in an otherwise turbulent flow and 3. flow-driven non-helical dynamos which amplify fields on scales at or below the driving turbulence. We discuss how all three types occur in astrophysics whereas plasma confinement device dynamos are of the first type. Type 3 dynamos require no magnetic or kinetic helicity of any kind. Focusing on Types 1 and 2 dynamos, we show how different limits of a unified set of equations for magnetic helicity evolution reveal both types. We explicitly describe a steady-state example of a Type 1 dynamo, and three examples of Type 2 dynamos: (i) closed volume and time dependent; (ii) steady state with open boundaries; (iii) time dependent with open boundaries.  相似文献   
47.
We briefly review recent developments in black hole accretion disk theory, emphasizing the vital role played by magnetohydrodynamic (MHD) stresses in transporting angular momentum. The apparent universality of accretion-related outflow phenomena is a strong indicator that large-scale MHD torques facilitate vertical transport of angular momentum. This leads to an enhanced overall rate of angular momentum transport and allows accretion of matter to proceed at an interesting rate. Furthermore, we argue that when vertical transport is important, the radial structure of the accretion disk is modified at small radii and this affects the disk emission spectrum. We present a simple model demonstrating how energetic, magnetically-driven outflows modify the emergent disk emission spectrum with respect to that predicted by standard accretion disk theory. A comparison of the predicted spectra against observations of quasar spectral energy distributions suggests that mass accretion rates inferred using the standard disk model may be severely underestimated.  相似文献   
48.
A new theory of eccentric accretion discs is presented. Starting from the basic fluid-dynamical equations in three dimensions, I derive the fundamental set of one-dimensional equations that describe how the mass, angular momentum and eccentricity vector of a thin disc evolve as a result of internal stresses and external forcing. The analysis is asymptotically exact in the limit of a thin disc, and allows for slowly varying eccentricities of arbitrary magnitude. The theory is worked out in detail for a Maxwellian viscoelastic model of the turbulent stress in an accretion disc. This generalizes the conventional alpha viscosity model to account for the non-zero relaxation time of the turbulence, and is physically motivated by a consideration of the nature of magnetohydrodynamic turbulence. It is confirmed that circular discs are typically viscously unstable to eccentric perturbations, as found by Lyubarskij, Postnov & Prokhorov, if the conventional alpha viscosity model is adopted. However, the instability can usually be suppressed by introducing a sufficient relaxation time and/or bulk viscosity. It is then shown that an initially uniformly eccentric disc does not retain its eccentricity as had been suggested by previous analyses. The evolutionary equations should be useful in many applications, including understanding the origin of planetary eccentricities and testing theories of quasi-periodic oscillations in X-ray binaries.  相似文献   
49.
Unstable pertubation modes exist in the magnetic field of penumbral electric current and I think the penumbral filaments are formed from the development of such modes. Under the short wave approximation the non-adiabatic dispersion equation is solved in the radial and transverse directions of the sunspot. From the condition of instability the length and width of the penumbral filament can be evaluated and it is found that the filament mode is static in the direction of the length and is non-moving in the direction of the width, that the penumbral filaments are a feature of the sunspot magnetic flow under gravity and that the presence of the filaments implies the existence of a twisted magnetic field.  相似文献   
50.
We study the topology of field lines threading buoyant magnetic flux structures. The magnetic structures, visually resembling idealized magnetic flux tubes, are generated self-consistently by numerical simulation of the interaction of magnetic buoyancy and a localized velocity shear in a stably stratified atmosphere. Depending on the parameters, the system exhibits varying degrees of symmetry. By integrating along magnetic field lines and constructing return maps, we show that, depending on the type of underlying behaviour, the stages of the evolution, and therefore the degree of symmetry, the resulting magnetic structures can have field lines with one of three distinct topologies. When the x -translational and y -reflectional symmetries remain intact, magnetic field lines lie on surfaces but individual lines do not cover the surface. When the y symmetry is broken, magnetic field lines lie on surfaces and individual lines do cover the surface. When both x and y symmetries are broken, magnetic field lines wander chaotically over a large volume of the magnetically active region. We discuss how these results impact our simple ideas of a magnetic flux tube as an object with an inside and an outside, and introduce the concept of 'leaky' tubes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号