首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   431篇
  免费   27篇
  国内免费   21篇
测绘学   2篇
大气科学   12篇
地球物理   172篇
地质学   234篇
海洋学   29篇
天文学   1篇
综合类   6篇
自然地理   23篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   10篇
  2020年   6篇
  2019年   10篇
  2018年   6篇
  2017年   18篇
  2016年   22篇
  2015年   14篇
  2014年   23篇
  2013年   23篇
  2012年   7篇
  2011年   19篇
  2010年   11篇
  2009年   30篇
  2008年   34篇
  2007年   31篇
  2006年   31篇
  2005年   28篇
  2004年   17篇
  2003年   15篇
  2002年   17篇
  2001年   15篇
  2000年   11篇
  1999年   9篇
  1998年   10篇
  1997年   6篇
  1996年   7篇
  1995年   2篇
  1994年   5篇
  1993年   1篇
  1992年   4篇
  1991年   7篇
  1990年   5篇
  1988年   4篇
  1987年   2篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
排序方式: 共有479条查询结果,搜索用时 93 毫秒
81.
http://www.sciencedirect.com/science/article/pii/S1674987111000764   总被引:1,自引:0,他引:1  
The Jinding Zn-Pb deposit has been generally considered to have formed from circulating basinal fluids in a relatively passive way,with fluid flow being controlled by structures and sedimentary facies,similar to many other sediments-hosted base metal deposits.However,several recent studies have revealed the presence of sand injection structures,intrusive breccias,and hydraulic fractures in the open pit of the Jinding deposit and suggested that the deposit was formed from explosive release of overpres-sured fluids.This study reports new observations of fluid overpressure-related structures from underground workings(Paomaping and Fengzishan).which show clearer crosscutting relationships than in the open pit.The observed structures include:I) sand(±rock fragment) dikes injecting into fractures in solidified rocks:2) sand(±rock fragment) bodies intruding into unconsolidated or semi-consolidated sediments;3) disintegrated semi-consolidated sand bodies;and 4) veins and breccias formed from hydraulic fracturing of solidified rocks followed by cementation of hydrothermal minerals.The development of ore minerals(sphalerite) in the cement of the various clastic injection and hydraulic fractures indicate that these structures were formed at the same time as mineralization.The development of hydraulic fractures and breccias with random orientation indicates small differential stress during mineralization,which is different from the stress field with strong horizontal shortening prior to mineralization. Fluid flow velocity may have been up to more than 11 m/s based on calculations from the size of the fragments in the clastic dikes.The clastic injection and hydraulic fracturing structures are interpreted to have formed from explosive release of overpressured fluids,which may have been related to either magmatic intrusions at depth or seismic activities that episodically tapped an overpressured fluid reservoir.Because the clastic injection and hydraulic structures are genetically linked with the mineralizing fluid source,they can be used as a guide for mineral exploration.  相似文献   
82.
Employing bed load formulae hydraulic geometry relations were derived for stream width, sediment transport velocity, and bed slope. The relations were examined in terms of friction factor, bed load discharge, bed load diameter, and water discharge. Two fundamental approaches to the prediction of hydraulic geometry have been developed. The first and most widely adopted approach is based on empirical equations whereas the second is based on solution of the governing equations of flow. The applied bed load formulae belong to different authors. Here, the comparison with the other derived relations is presented.  相似文献   
83.
This paper addresses the integral conservation of linear and angular momentum in the steady hydraulic jump in a linearly diverging channel.The flow is considered to be divided into a mainstream that conveys the total liquid discharge, and a roller where no average mass transport occurs. It is assumed that no macroscopic rheological relationship holds, so mass, momentum and angular momentum integral balances are independent relationships. Normal stresses are assumed to be hydrostatic on vertical, cylindrical surfaces. Viscous stresses are assumed to be negligible with respect to turbulent stresses. Assuming that the horizontal velocity distribution in the mainstream is uniform and that the horizontal momentum and angular momentum in the roller are negligible with respect to their mainstream counterparts, an analytical solution is obtained for the free surface profile of the flow. This solution is fundamental for finding the sequent depths and their positions. Consequently, it permits solving for the length of the jump, which is assumed to be equal to the length of the roller. Mainstream and roller thicknesses can also be derived from the present solution. This model may also be theoretically used to derive the average shear stresses exerted by the roller on the mainstream and the power losses per unit weight. This second relationship, which returns the well-known classical expression for total power loss in the jump, demonstrates that the strongly idealized mechanical model proposed here is internally consistent.  相似文献   
84.
通过对汶川地震、通海地震、唐山地震和澜沧-耿马地震中水利工程破坏情况的统计分析,本文以统计表的形式直观地反映了水利工程震害的特点及破坏形式.根据水利工程的震害特点,探讨分析了水利工程震害的主要影响因素,结果表明地震烈度、结构设计、施工质量、地基及场地条件是水利工程震害的主要影响因素.基于水利工程震害的特点及主要影响因素...  相似文献   
85.
Microstructure and hydraulic conductivity of a compacted lime-treated soil   总被引:1,自引:0,他引:1  
Under a given compaction energy and procedure, it is known that maximum dry density of a soil is lowered due to lime addition. This modification of maximum dry density could alter the hydraulic conductivity of the soil. The main object of this study was to assess the impact of lime-stabilization on a silt soil microstructure and then on saturated hydraulic conductivity. An investigation at the microscopic level with mercury intrusion porosimetry showed that lime treatment induced the formation of a new small class, with a diameter lower than 3 × 103 Å in the compacted soil. This class is responsible for the difference in dry density between the treated and the untreated sample after compaction. It is shown that this small pores class was not altered by the compaction water content, the compaction procedure or the dry density. As in untreated soils, only the larger pores were modified by the compaction water content and the compaction procedure in the lime treated samples. The hydraulic conductivity appeared to be only related to the largest pores volume of the tested silt, regardless of lime treatment. Therefore, this study demonstrated that even if addition of lime resulted in a dramatic change of the maximum dry density of the tested silty soil, its effect on hydraulic conductivity is limited.  相似文献   
86.
In petroleum industry, the difference between pore pressure (Pp) and minimum horizontal stress Sh (termed the seal or retention capacity) is of major consideration because it is often assumed to represent how close a system is to hydraulic failure and thus the maximum hydrocarbon column height that can be maintained. While Sh and Pp are often considered to be independent parameters, several studies in the last decade have demonstrated that Sh and Pp are in fact coupled. However, the nature of this coupling relationship remains poorly understood. In this paper, we explore the influences of the spatial pore pressure distribution on Sh/Pp coupling and then on failure pressure predictions and trap integrity evaluation. With analytical models, we predict the fluid pressure sustainable within a reservoir before failure of its overpressured shale cover. We verify our analytical predictions with experiments involving analogue materials and fluids. We show that hydraulic fracturing and seal breach occur for fluid pressure greater than it would be expected from conventional retention capacity. This can be explained by the impact of the fluid overpressure field in the overburden and the pressure diffusion around the reservoir on the principal stresses. We calculate that supralithostatic pressure could locally be reached in overpressured covers. We also define the retention capacity of a cover (RC) surrounding a fluid source or reservoir as the difference between the failure pressure and the fluid overpressure prevailing in shale at the same depth. In response to a localized fluid pressure rise, we show that the retention capacity does not only depend on the pore fluid overpressure of the overburden but also on the tensile strength of the cover, its Poisson’s ratio, and the depth and width of the fluid source.  相似文献   
87.
This study investigates the hydraulic conductivity field and the groundwater flow pattern as predicted by a calibrated steady state groundwater flow model for the Keta Strip, southeastern Ghana. The hydraulic conductivity field is an important parameter in evaluating aquifer properties in space, and in general basin-wide groundwater resources evaluation and management. This study finds that the general hydraulic conductivity of the unconsolidated unconfined aquifer system of the Keta Strip ranges between 2 m/d and 20 m/d, with an average of 15 m/d. The spatial variation in horizontal hydraulic conductivity appears to take the trend in the variations in the nature of the material in space. Calibrated groundwater recharge suggests that 6.9–34% of annual precipitation recharges the shallow aquifer system. This amount of recharge is significant and suggests high fortunes in terms of groundwater resources development for agriculture and industrial activities in the area. A spatial distribution of groundwater recharge from precipitation is presented in this study. The spatial pattern appears to take the form of the distribution in horizontal hydraulic conductivity, and suggests that the vertical hydraulic conductivity takes the same pattern of spatial variation as the horizontal hydraulic conductivity. This is consistent with observations in other areas. The resulting groundwater flow is dominated by local flow systems as the unconfined system is quite shallow. A general northeast – southwest flow pattern has been observed in the study area.  相似文献   
88.
Geothermal fields and hydrothermal mineral deposits are manifestations of the interaction between heat transfer and fluid flow in the Earth’s crust. Understanding the factors that drive fluid flow is essential for managing geothermal energy production and for understanding the genesis of hydrothermal mineral systems. We provide an overview of fluid flow drivers with a focus on flow driven by heat and hydraulic head. We show how numerical simulations can be used to compare the effect of different flow drivers on hydrothermal mineralisation. We explore the concepts of laminar flow in porous media (Darcy’s law) and the non-dimensional Rayleigh number (Ra) for free thermal convection in the context of fluid flow in hydrothermal systems in three dimensions. We compare models of free thermal convection to hydraulic head driven flow in relation to hydrothermal copper mineralisation at Mount Isa, Australia. Free thermal convection occurs if the permeability of the fault system results in Ra above the critical threshold, whereas a vertical head gradient results in an upward flow field.  相似文献   
89.
山西煤矿矿区井下地应力场分布特征研究   总被引:19,自引:2,他引:17       下载免费PDF全文
采用煤矿井下专用的小孔径水压致裂地应力测量装置,在山西省的晋城、潞安、汾西、华晋、阳泉、平朔、大同等矿区,完成了160个测点的地应力测量,测点地质条件涵盖了山西省煤矿大部分条件.基于实测数据,分析了地应力与测点埋深的关系,不同深度条件下煤矿矿区井下地应力状态;绘制出山西省煤矿矿区井下地应力分布图,并与震源机制解的分析结果进行了比较,得出山西省煤矿矿区井下地应力场分布特征与变化规律.煤矿井下水平应力总体上随着埋深增加而增大,但由于各矿区地质条件差异较大,导致地应力测试数据离散性也较大;埋深小于250 m的岩层应力状态主要为σHhV型,埋深处于250~500 m的岩层应力状态以σHVh型为主,埋深较大的矿区主要为σVHh型;最大水平主应力与垂直主应力的比值绝大部分集中在0.5~2.0之间,而且随着埋深增加,侧压比呈现减小的趋势,并向1附近集中;最大水平主应力与最小水平主应力的比值主要集中在1.5~2.0之间;平均水平主应力与垂直主应力的比值大多处于0.5~1.5,尤以0.5~1.0之间最多;山西省煤矿矿区从北到南,最大水平主应力方向发生了较大变化.北部最大水平主应力方向为NE,往南发生偏转到NNW;靠东部与西部偏向NW;靠东南部出现了多变的方向.井下实测数据与震源机制解相比在部分区域一致性较好,而在另一些区域存在明显的差异.特别是在受较大地质构造影响的区域,水平主应力方向往往发生明显的扭转和变化.  相似文献   
90.
Unsaturated water flow through soil aggregates is controlled by the contacts between aggregates. The contacts are highly conductive when wet and become bottle-necks for flow when drained. We postulate that the hydraulic conductivity of the contacts is in first place determined by the water-filled contact area. The objective of this study was to measure and model the water-filled contact area and to relate it to the conductivity of a series of aggregates. We performed microscopic tomography of an aggregate pair equilibrated at different water potentials. By means of image analysis and a morphological pore network model, the water-filled contact area was calculated. We found that the aggregate surface is rough and the contact region contains macropores which are rapidly drained. As a consequence the water-filled contact area dramatically decreases as the water potential is diminished. We modeled this process by describing the aggregates as spheres covered by much smaller spheres representing the roughness. The water-filled contact was analytically calculated from this model. Knowing the water-filled contact area we up-scale the hydraulic conductivity of a series of aggregates. This is calculated as the harmonic mean of the contact and aggregate conductivities. The contact conductivity is calculated from the water-filled contact area. Near saturation the conductivity of a series of aggregates is close to the conductivity of a single aggregate, and, when further drained, it rapidly decreases as the water-filled contact area. The model matches the experimental data well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号