首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2865篇
  免费   644篇
  国内免费   1199篇
测绘学   122篇
大气科学   141篇
地球物理   383篇
地质学   3465篇
海洋学   168篇
天文学   18篇
综合类   187篇
自然地理   224篇
  2024年   14篇
  2023年   47篇
  2022年   112篇
  2021年   144篇
  2020年   123篇
  2019年   170篇
  2018年   144篇
  2017年   179篇
  2016年   173篇
  2015年   156篇
  2014年   197篇
  2013年   205篇
  2012年   233篇
  2011年   182篇
  2010年   195篇
  2009年   216篇
  2008年   184篇
  2007年   218篇
  2006年   216篇
  2005年   195篇
  2004年   182篇
  2003年   146篇
  2002年   134篇
  2001年   118篇
  2000年   129篇
  1999年   104篇
  1998年   104篇
  1997年   105篇
  1996年   75篇
  1995年   59篇
  1994年   67篇
  1993年   39篇
  1992年   36篇
  1991年   26篇
  1990年   25篇
  1989年   10篇
  1988年   12篇
  1987年   16篇
  1986年   9篇
  1985年   3篇
  1984年   4篇
  1981年   1篇
  1980年   1篇
排序方式: 共有4708条查询结果,搜索用时 265 毫秒
61.
Abstract. Major and trace element contents are reported for Permian manganese ore and associated greenstone from the Ananai manganese deposit in the Northern Chichibu Belt, central Shikoku, Japan. The manganese deposit occurs between greenstone and red chert, or among red chert beds. Chemical compositions of manganese ore are characterized by enrichments in Mn, Ca, P, Co, Ni, Zn, Sr and Ba, and negative Ce and positive Eu anomalies relative to post-Archean average Australian Shale (PAAS). Geochemical features of the manganese ore are similar to those of modern submarine hydrother-mal manganese deposits from volcanic arc or hotspot setting. In addition, geochemical characteristics of the greenstone closely associated with the Ananai manganese deposit are analogous to those of with-in plate alkaline basalt (WPA). Consequently, the Ananai manganese deposit was most likely formed by hydrothermal activity related to hotspot volcanism in the Panthalassa Ocean during the Middle Permian. This is the first report documenting the terrestrially-exposed manganese deposit that was a submarine precipitate at hotspot.  相似文献   
62.
Abstract. Lermontovskoe tungsten skarn deposit in central Sikhote-Alin is concluded to have formed at 132 Ma in the Early Cretaceous, based on K-Ar age data for muscovite concentrates from high-grade scheelite ore and greisenized granite. Late Paleozoic limestone in Jurassic - early Early Cretaceous accretionary complexes was replaced during hydrothermal activity related to the Lermontovskoe granodiorite stock of reduced type. The ores, characterized by Mo-poor scheelite and Fe3+- poor mineral assemblages, indicate that this deposit is a reduced-type tungsten skarn (Sato, 1980, 1982), in accordance with the reduced nature of the granodiorite stock.
The Lermontovskoe deposit, the oldest mineralization so far known in the Sikhote-Alin orogen, formed in the initial stage of Early Cretaceous felsic magmatism. The magmatism began shortly after the accretionary tectonics ceased, suggesting an abrupt change of subduction system. Style of the Early Cretaceous magmatism and mineralization is significantly different between central Sikhote-Alin and Northeast Japan; reduced-type and oxidized-type, respectively. The different styles may reflect different tectonic environments; compressional and extensional, respectively. These two areas, which were closer together before the opening of the Japan Sea in the Miocene, may have been juxtaposed under a transpressional tectonic regime after the magmatism.  相似文献   
63.
The Guará and Botucatu formations comprise an 80 to 120 m thick continental succession that crops out on the western portion of the Rio Grande do Sul State (Southernmost Brazil). The Guará Formation (Upper Jurassic) displays a well-defined facies shift along its outcrop belt. On its northern portion it is characterised by coarse-grained to conglomeratic sandstones with trough and planar cross-bedding, as well as low-angle lamination, which are interpreted to represent braided river deposits. Southwards these fluvial facies thin out and interfinger with fine- to medium-grained sandstones with large-scale cross-stratification and horizontal lamination, interpreted as eolian dune and eolian sand sheets deposits, respectively. The Botucatu Formation is characterised by large-scale cross-strata formed by successive climbing of eolian dunes, without interdune and/or fluvial accumulation (dry eolian system). The contact between the Guará and the Botucatu formations is delineated by a basin-wide deflation surface (supersurface). The abrupt change in the depositional conditions that took place across this supersurface suggests a major climate change, from semi-arid (Upper Jurassic) to hyper-arid (Lower Cretaceous) conditions. A rearrangement of the Paraná Basin depocenters is contemporaneous to this climate change, which seems to have changed from a more restrict accumulation area in the Guará Formation to a wider sedimentary context in the Botucatu Formation.  相似文献   
64.
Although hydrocarbon-bearing fluids have been known from the alkaline igneous rocks of the Khibiny intrusion for many years, their origin remains enigmatic. A recently proposed model of post-magmatic hydrocarbon (HC) generation through Fischer-Tropsch (FT) type reactions suggests the hydration of Fe-bearing phases and release of H2 which reacts with magmatically derived CO2 to form CH4 and higher HCs. However, new petrographic, microthermometric, laser Raman, bulk gas and isotope data are presented and discussed in the context of previously published work in order to reassess models of HC generation. The gas phase is dominated by CH4 with only minor proportions of higher hydrocarbons. No remnants of the proposed primary CO2-rich fluid are found in the complex. The majority of the fluid inclusions are of secondary nature and trapped in healed microfractures. This indicates a high fluid flux after magma crystallisation. Entrapment conditions for fluid inclusions are 450–550 °C at 2.8–4.5 kbar. These temperatures are too high for hydrocarbon gas generation through the FT reaction. Chemical analyses of rims of Fe-rich phases suggest that they are not the result of alteration but instead represent changes in magma composition during crystallisation. Furthermore, there is no clear relationship between the presence of Fe-rich minerals and the abundance of fluid inclusion planes (FIPs) as reported elsewhere. δ13C values for methane range from − 22.4‰ to − 5.4‰, confirming a largely abiogenic origin for the gas. The presence of primary CH4-dominated fluid inclusions and melt inclusions, which contain a methane-rich gas phase, indicates a magmatic origin of the HCs. An increase in methane content, together with a decrease in δ13C isotope values towards the intrusion margin suggests that magmatically derived abiogenic hydrocarbons may have mixed with biogenic hydrocarbons derived from the surrounding country rocks.  相似文献   
65.
The Quaternary Eburru volcanic complex in the south-central Kenya Rift consists of pantelleritic trachytes and pantellerites. The phenocryst assemblage in the trachytes is sanidine + fayalite + ferrohedenbergite + aenigmatite ± quartz ± ilmenite ± magnetite ± pyrrhotite ± pyrite. In the pantellerites, the assemblage is sanidine + quartz + ferrohedenbergite + fayalite + aenigmatite + ferrorichterite + pyrrhotite ± apatite, although fayalite, ferrohedenbergite and ilmenite are absent from more evolved rocks (e.g. with SiO2 > 71%). QUILF temperature calculations for the trachytes range from 709 to 793 °C and for the pantellerites 668–708 °C, the latter temperatures being among the lowest recorded for peralkaline silicic magmas. The QUILF thermobarometer demonstrates that the Eburru magmas crystallized at relatively low oxidation states (ΔFMQ + 0.5 to − 1.6) for both trachytes and pantellerites. The trachytes and pantellerites evolved along separate liquid lines of descent, the trachytes possibly deriving from a more mafic parent by fractional crystallization and the pantellerites from extreme fractionation of comenditic magmas.  相似文献   
66.
67.
Paleontological study of Upper Jurassic and Lower Cretaceous sediments recovered by boreholes in the Agan-Vakh and Nadym-Vengapur interfluves clarified environments of their deposition. As is shown, influx of siliciclastic material to central areas of the West Siberian sea basin varied through time. Taxonomic composition and ecological structure of nektonic and benthic fossil assemblages are analyzed and considered in terms of environmental factors such as hydrodynamics, aeration, temperature, and salinity of seawater.  相似文献   
68.
69.
Platinum-group element (PGE) mineralisation within the Platreef at Overysel is controlled by the presence of base metal sulphides (BMS). The floor rocks at Overysel are Archean basement gneisses, and unlike other localities along the strike of the Platreef where the floor is comprised of Transvaal Supergroup sediments, the intimate PGE–BMS relationship holds strong into the footwall rocks. Decoupling of PGE from BMS is rare and the BMS and platinum-group mineral assemblages in the Platreef and the footwall are almost identical. There is minimal overprinting by hydrothermal fluids; therefore, the mineralisation style present at Overysel may represent the most ‘primary’ style of Platreef mineralisation preserved anywhere along the strike. Chondrite-normalised PGE profiles reveal a progressive fractionation of the PGE with depth into the footwall, with Ir, Ru and Rh dramatically depleted with depth compared to Pt, Pd and Au. This feature is not observed at Sandsloot and Zwartfontein, to the south of Overysel, where the footwall rocks are carbonates. There is evidence from rare earth element abundances and the amount of interstitial quartz towards the base of the Platreef pyroxenites that contamination by a felsic melt derived from partial melting of the gneissic footwall has taken place. Textural evidence in the gneisses suggests that a sulphide liquid percolated down into the footwall through a permeable, inter-granular network that was produced by partial melting around grain boundaries in the gneisses that was induced by the intrusion of the Platreef magma. PGE were originally concentrated within a sulphide liquid in the Platreef magma, and the crystallisation of monosulphide solid solution from the sulphide liquid removed the majority of the IPGE and Rh from it whilst still within the mafic Platreef. Transport of PGE into the gneisses, via downward migration of the residual sulphide liquid, fractionated out the remaining IPGE and Rh in the upper parts of the gneisses leaving a ‘slick’ of disseminated sulphides in the gneiss, with the residual liquid becoming progressively more depleted in these elements relative to Pt, Pd and Au. Highly sulphide-rich zones with massive sulphides formed where ponding of the sulphide liquid occurred due to permeability contrasts in the footwall. This study highlights the fact that there is a fundamental floor rock control on the mechanism of distribution of PGE from the Platreef into the footwall rocks. Where the floor rocks are sediments, fluid activity related to metamorphism, assimilation and later serpentinisation has decoupled PGE from BMS in places, and transport of PGE into the footwall is via hydrothermal fluids. In contrast, where the floor is comprised of anhydrous gneiss, such as at Overysel, there is limited fluid activity and PGE behaviour is controlled by the behaviour of sulphide liquids, producing an intimate PGE–BMS association. Xenoliths and irregular bands of chromitite within the Platreef are described in detail for the first time. These are rich in the IPGE and Rh, and evidence from laurite inclusions indicates they must have crystallised from a PGE-saturated magma. The disturbed and xenolithic nature of the chromitites would suggest they are rip-up clasts, either disturbed by later pulses of Platreef magma in a multi-phase emplacement or transported into the Platreef from a pre-existing source in a deeper staging chamber or conduit.  相似文献   
70.
库车坳陷侏罗系煤成气动力学模拟研究   总被引:1,自引:0,他引:1  
应用黄金管—高压釜封闭体系热模拟实验与GC、GC-IRMS分析技术,结合KINETICS专用软件,对库车坳陷侏罗系煤成气进行了动力学模拟研究。库车坳陷侏罗系煤具有高的产气性,在高演化阶段主要产甲烷气;侏罗系煤热解气甲烷碳同位素为-36‰~-25‰,乙烷碳同位素为-28‰~-16‰;甲烷、C2-C5气态烃的生成活化能分别为(47~64k)calm/ol、(55~72k)calm/ol,频率因子各为5.265×1013s-1、5.388×1018s-1。在此基础上,进一步探讨了克拉2气田天然气的成因。研究认为,克拉2气田天然气属阶段捕获的煤成气,主要聚集了5~1Ma时期的天然气,其成熟度Ro分布范围为1.3%~2.5%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号