首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   13篇
  国内免费   4篇
测绘学   4篇
大气科学   7篇
地球物理   56篇
地质学   33篇
海洋学   15篇
天文学   2篇
综合类   2篇
自然地理   48篇
  2022年   7篇
  2021年   3篇
  2020年   3篇
  2019年   5篇
  2018年   2篇
  2017年   3篇
  2016年   7篇
  2015年   5篇
  2014年   5篇
  2013年   9篇
  2011年   4篇
  2010年   6篇
  2009年   10篇
  2008年   11篇
  2007年   13篇
  2006年   10篇
  2005年   7篇
  2004年   4篇
  2003年   6篇
  2002年   3篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1998年   5篇
  1997年   8篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1989年   1篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
排序方式: 共有167条查询结果,搜索用时 46 毫秒
121.
The present study was designed to investigate the relative importance of climatic (temperature and precipitation), geographic (altitude) and morphometric (lake area) factors in predicting fish species richness and assemblages in Chinese lakes at a large spatial scale. Two recursive partitioning tree-based approaches: Classification and Regression Trees (CARTs) and Multivariate Regression Trees (MRTs) were employed to generate predictive models respectively. Six fish assemblages were thus defined from the MRT model. The results indicated that lake altitude was the main determinant for predicting fish assemblages in Chinese lakes (30.43%), followed by precipitation of the driest month (10.47%), temperature annual range (3.62%) and annual mean temperature (3.15%). Validated CART model implied that precipitation of driest month, maximum temperature of warmest month and lake area were the main predictors in determining fish species richness patterns. Overall, our results indicated that the altitudinal extent and range of climatic variation was sufficient to overshadow the area effect in predicting fish species richness and assemblages in Chinese lakes. At the macroecological scale, the effect of temperature and precipitation on fish richness and assemblages also suggests future changes in fish diversity as a consequence of climate change.  相似文献   
122.
长江中下游地区湖泊现代沉积硅藻分布基本特征   总被引:14,自引:2,他引:14  
首次对长江中下游地区45个湖泊表层沉积硅藻进行了分析.根据硅藻多属种百分含量在总磷浓度和营养梯度上的分布规律以及硅藻数据的降维对应分析(DCA)结果表明,硅藻组合响应于湖泊营养态的变化,尤其是当水体接近于富营养态时,硅藻组合出现迅速转变,即以附生、附生浮游、浮游和底栖种类的多生态型的硅藻组合迅速被富营养浮游种为优势的组合取代.由此提出当Cyclostephanos、Stephanodiscus等种类和Cyclotella meneghiniana、C.atomus组合出现可以预警湖泊水体富营养的发生.另外,硅藻组合还能很好地指示草型和藻型湖泊的特征,可望成为有效判识湖泊生态类型的工具.  相似文献   
123.
The region studied includes the Laurentian Great Lakes and a diversity of smaller glacial lakes, streams and wetlands south of permanent permafrost and towards the southern extent of Wisconsin glaciation. We emphasize lakes and quantitative implications. The region is warmer and wetter than it has been over most of the last 12000 years. Since 1911 observed air temperatures have increased by about 0·11°C per decade in spring and 0·06°C in winter; annual precipitation has increased by about 2·1% per decade. Ice thaw phenologies since the 1850s indicate a late winter warming of about 2·5°C. In future scenarios for a doubled CO2 climate, air temperature increases in summer and winter and precipitation decreases (summer) in western Ontario but increases (winter) in western Ontario, northern Minnesota, Wisconsin and Michigan. Such changes in climate have altered and would further alter hydrological and other physical features of lakes. Warmer climates, i.e. 2 × CO2 climates, would lower net basin water supplies, stream flows and water levels owing to increased evaporation in excess of precipitation. Water levels have been responsive to drought and future scenarios for the Great Lakes simulate levels 0·2 to 2·5 m lower. Human adaptation to such changes is expensive. Warmer climates would decrease the spatial extent of ice cover on the Great Lakes; small lakes, especially to the south, would no longer freeze over every year. Temperature simulations for stratified lakes are 1–7°C warmer for surface waters, and 6°C cooler to 8°C warmer for deep waters. Thermocline depth would change (4 m shallower to 3·5 m deeper) with warmer climates alone; deepening owing to increases in light penetration would occur with reduced input of dissolved organic carbon (DOC) from dryer catchments. Dissolved oxygen would decrease below the thermocline. These physical changes would in turn affect the phytoplankton, zooplankton, benthos and fishes. Annual phytoplankton production may increase but many complex reactions of the phytoplankton community to altered temperatures, thermocline depths, light penetrations and nutrient inputs would be expected. Zooplankton biomass would increase, but, again, many complex interactions are expected. Generally, the thermal habitat for warm-, cool- and even cold-water fishes would increase in size in deep stratified lakes, but would decrease in shallow unstratified lakes and in streams. Less dissolved oxygen below the thermocline of lakes would further degrade stratified lakes for cold water fishes. Growth and production would increase for fishes that are now in thermal environments cooler than their optimum but decrease for those that are at or above their optimum, provided they cannot move to a deeper or headwater thermal refuge. The zoogeographical boundary for fish species could move north by 500–600 km; invasions of warmer water fishes and extirpations of colder water fishes should increase. Aquatic ecosystems across the region do not necessarily exhibit coherent responses to climate changes and variability, even if they are in close proximity. Lakes, wetlands and streams respond differently, as do lakes of different depth or productivity. Differences in hydrology and the position in the hydrological flow system, in terrestrial vegetation and land use, in base climates and in the aquatic biota can all cause different responses. Climate change effects interact strongly with effects of other human-caused stresses such as eutrophication, acid precipitation, toxic chemicals and the spread of exotic organisms. Aquatic ecological systems in the region are sensitive to climate change and variation. Assessments of these potential effects are in an early stage and contain many uncertainties in the models and properties of aquatic ecological systems and of the climate system. © 1997 John Wiley & Sons, Ltd.  相似文献   
124.
中国8大湖泊冬季水-气界面甲烷通量初步研究   总被引:8,自引:1,他引:7  
采用静态箱-气相色谱法对中国不同地区的8个湖泊(洞庭湖、鄱阳湖、巢湖、南四湖、洪泽湖、抚仙湖、洱海、滇池)冬季水体水-气界面甲烷(CH4)通量进行了24 h连续观测,对中国湖泊冬季CH4的总释放量进行了估算.结果表明:鄱阳湖、巢湖、南四湖、洪泽湖和滇池24 h内各时段均为大气CH4的源,其通量分别为0.818、0.021、0.034、0.019、0.163mg/(m2·h);洞庭湖、抚仙湖和洱海部分时段为大气CH4的汇,但从24 h平均通量来看,仍为大气CH4的源,通量分别为0.199、0.012、0.044mg/(m2·h).冬季湖泊水体CH4通量空间差异较小,其大小主要受风速的影响,与水温、箱内温度和DOC没有明显的相关关系.中国湖泊冬季(90 d)CH4总释放量大约为3.22±2.75×107 kg,约为1990年中国稻田CH4总释放量的2.8‰.  相似文献   
125.
富营养化湖泊中的鲢、鳙控藻问题:争议与共识   总被引:3,自引:0,他引:3  
刘其根  张真 《湖泊科学》2016,28(3):463-475
我国湖泊富营养化的治理方向正在从污染控制走向湖泊的生态修复与管理,因此以鲢、鳙为主导的非经典生物操纵技术受到了关注和重视.然而,鲢、鳙控藻的研究有成败两方面的案例,导致人们对能否利用鲢、鳙控制富营养化湖泊中藻类的过度增长的看法仍有分歧.本文通过对国内大量相关研究案例进行剖析,指出了导致鲢、鳙控藻试验产生不同结果的可能原因,提出了对鲢、鳙控藻研究可以得到的共识,以便为我国湖泊环境的管理和保护提供借鉴.  相似文献   
126.
刘昔  王智  王学雷  杨超  宋辛辛  吕晓蓉  李珍 《湖泊科学》2018,30(5):1206-1217
为总体了解我国主要湖泊水体重金属污染现状与生态风险,本文通过历史数据收集,利用物种敏感性分布(SSD)模型与主成分分析法,分析了我国18个湖泊或水域中6种重金属(Zn、Cd、Cr、Cu、Hg和Pb)的分布情况以及其对湖泊淡水生物的潜在生态风险(PAF)和联合生态风险(ms PAF).结果表明:在18湖泊中,6种重金属在湖泊水体中的浓度由高至低依次为Zn(均值为17.06μg/L,范围为4.03~29.33μg/L)、Pb(均值为9.33μg/L,范围为0.04~33.7μg/L)、Cr(均值为5.56μg/L,范围为0.65~40.0μg/L)、Cu(均值为3.71μg/L,范围为0.02~10.2μg/L)、Cd(均值为1.17μg/L,范围为0.01~13.6μg/L)和Hg(均值为0.19μg/L,范围为0.03~1.04μg/L);18个湖泊中重金属的分布情况由3个主成分反映,F1(Cu、Zn、Hg)、F2(Pb、Cd)和F3(Cr、Cu)的贡献率分别为28.50%、24.17%和18.40%,其分布情况受经济和地域差异影响较小;SSD模型显示,不同重金属对全部淡水生物的HC5值不同,从小到大依次为CuCrHgCdPbZn,淡水生物对重金属Cu的敏感性最高,对重金属Zn的敏感性最低;将选取的18个湖泊按ms PAF排序,由高到低依次为呼伦湖(67.0%)鲁湖(56.7%)洱海(52.7%)金银湖(52.3%)太湖(40.5%)墨水湖(39.3%)滆湖(30.2%)鄱阳湖(26.8%)洪泽湖(23.1%)高宝卲伯湖(22.4%)巢湖(20.7%)乌梁素海(19.7%)东湖(19.1%)梁子湖(4.0%)汤逊湖(2.0%)洞庭湖(1%)洪湖(0)=骆马湖(0).研究结果对于了解我国淡水湖泊水质现状和环境安全风险具有重要意义,为湖泊的进一步保护与管理提供了一定的科学依据.  相似文献   
127.
长江中游通江湖泊江湖关系研究进展   总被引:27,自引:8,他引:19  
自然通江的洞庭湖和鄱阳湖与长江之间形成复杂的江湖水沙交换关系,其变化影响着区域洪水灾害防治、水资源利用、水环境保护和水生态安全维护,是长江中游水问题的核心.从长江中游大型通江湖泊江湖关系的概念与内涵、江湖关系演变过程、江湖关系变化的影响因素及效应等方面,系统梳理了长江中游通江湖泊江湖关系研究的进展.针对当前研究现状和存在的问题,提出了研究江湖关系表征指标体系是正确认识江湖关系的前提;定量区分人类活动和气候变化影响的贡献率是江湖关系研究的重点和难点;深入跟踪研究三峡等重大工程对江湖关系变化的影响是一项长期任务;评估江湖关系调整背景下江湖关系的健康状况,研究以江湖水系重大水利工程群联合调度为核心的江湖关系优化调控原理,维持江湖两利的长江中游健康河湖系统格局和相互作用关系是江湖关系研究的根本目标.  相似文献   
128.
黄河源区湖泊萎缩的原因初步分析   总被引:2,自引:0,他引:2  
通过对黄河源区主要湖泊的水环境变化特征的论述,运用水文地质学及水环境理论学等方法,对黄河源区湖泊萎缩的原因进行了初步分析,取得了比较可靠的成果资料,为黄河源区生态环境建设和保护提供了科学依据。  相似文献   
129.
Glacial Isostatic Adjustment (GIA) modelling in North America relies on relative sea level information which is primarily obtained from areas far away from the uplift region. The lack of accurate geodetic observations in the Great Lakes region, which is located in the transition zone between uplift and subsidence due to the deglaciation of the Laurentide ice sheet, has prevented more detailed studies of this former margin of the ice sheet. Recently, observations of vertical crustal motion from improved GPS network solutions and combined tide gauge and satellite altimetry solutions have become available. This study compares these vertical motion observations with predictions obtained from 70 different GIA models. The ice sheet margin is distinct from the centre and far field of the uplift because the sensitivity of the GIA process towards Earth parameters such as mantle viscosity is very different. Specifically, the margin area is most sensitive to the uppermost mantle viscosity and allows for better constraints of this parameter. The 70 GIA models compared herein have different ice loading histories (ICE-3/4/5G) and Earth parameters including lateral heterogeneities. The root-mean-square differences between the 6 best models and the two sets of observations (tide gauge/altimetry and GPS) are 0.66 and 1.57 mm/yr, respectively. Both sets of independent observations are highly correlated and show a very similar fit to the models, which indicates their consistent quality. Therefore, both data sets can be considered as a means for constraining and assessing the quality of GIA models in the Great Lakes region and the former margin of the Laurentide ice sheet.  相似文献   
130.
Proglacial lakes are becoming ubiquitous at the termini of many glaciers worldwide due to continued climate warming and glacier retreat, and such lakes have important consequences for the dynamics and future stability of these glaciers. In light of this, we quantified decadal changes in glacier velocity since 1991 using satellite remote sensing for Breiðamerkurjökull, a large lake-terminating glacier in Iceland. We investigated its frontal retreat, lake area change and ice surface elevation change, combined with bed topography data, to understand its recent rapid retreat and future stability. We observed highly spatially variable velocity change from 1991 to 2015, with a substantial increase in peak velocity observed at the terminus of the lake-terminating eastern arm from ~1.00 ± 0.36 m day−1 in 1991 to 3.50 ± 0.25 m day−1 in 2015, with mean velocities remaining elevated from 2008 onwards. This is in stark comparison to the predominately land-terminating arms, which saw no discernible change in their velocity over the same period. We also observed a substantial increase in the area of the main proglacial lake (Jökulsárlón) since 1982 of ~20 km2, equating to an annual growth rate of 0.55 km2 year−1. Over the same period, the eastern arm retreated by ~3.50 km, which is significantly greater than the other arms. Such discrepancies between the different arms are due to the growth and, importantly, depth increase of Jökulsárlón, as the eastern arm has retreated into its ~300 m-deep reverse-sloping subglacial trough. We suggest that this growth in lake area, forced initially by rising air temperatures, combined with the increase in lake depth, triggered an increase in flow acceleration, leading to further rapid retreat and the initiation of a positive feedback mechanism. These findings may have important implications for how increased melt and calving forced by climate change will affect the future stability of large soft-bedded, reverse-sloped, subaqueous-terminating glaciers elsewhere. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号