首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   4篇
  国内免费   11篇
测绘学   2篇
地球物理   81篇
地质学   48篇
海洋学   5篇
天文学   4篇
自然地理   6篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2009年   12篇
  2008年   15篇
  2007年   11篇
  2006年   12篇
  2005年   3篇
  2004年   9篇
  2003年   8篇
  2002年   3篇
  2001年   4篇
  2000年   6篇
  1999年   6篇
  1998年   6篇
  1997年   4篇
  1996年   7篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有146条查询结果,搜索用时 46 毫秒
131.
The use of a hand-held thermal camera during the 2002–2003 Stromboli effusive eruption proved essential in tracking the development of flow field structures and in measuring related eruption parameters, such as the number of active vents and flow lengths. The steep underlying slope on which the flow field was emplaced resulted in a characteristic flow field morphology. This comprised a proximal shield, where flow stacking and inflation caused piling up of lava on the relatively flat ground of the vent zone, that fed a medial–distal lava flow field. This zone was characterized by the formation of lava tubes and tumuli forming a complex network of tumuli and flows linked by tubes. Most of the flow field was emplaced on extremely steep slopes and this had two effects. It caused flows to slide, as well as flow, and flow fronts to fail frequently, persistent flow front crumbling resulted in the production of an extensive debris field. Channel-fed flows were also characterized by development of excavated debris levees in this zone (Calvari et al. 2005). Collapse of lava flow fronts and inflation of the upper proximal lava shield made volume calculation very difficult. Comparison of the final field volume with that expecta by integrating the lava effusion rates through time suggests a loss of ~70% erupted lava by flow front crumbling and accumulation as debris flows below sea level. Derived relationships between effusion rate, flow length, and number of active vents showed systematic and correlated variations with time where spreading of volume between numerous flows caused an otherwise good correlation between effusion rate, flow length to break down. Observations collected during this eruption are useful in helping to understand lava flow processes on steep slopes, as well as in interpreting old lava–debris sequences found in other steep-sided volcanoes subject to effusive activity.  相似文献   
132.
单层球面网壳在地震下的响应特性与失效机理   总被引:3,自引:0,他引:3  
针对单层球面网壳在地震作用下的响应进行了大量算例分析,探讨了结构失效特点,从宏观和微观综合多项指标给出结构强震失效的判别方法。在频域响应分析的基础上阐述了网壳结构动力作用的特点,总结了单层球面网壳的地震下的破坏特征及失效机理。  相似文献   
133.
An open channel lava flow on Mt. Etna (Sicily) was observed during May 30–31, 2001. Data collected using a forward looking infrared (FLIR) thermal camera and a Minolta-Land Cyclops 300 thermal infrared thermometer showed that the bulk volume flux of lava flowing in the channel varied greatly over time. Cyclic changes in the channel's volumetric flow rate occurred over several hours, with cycle durations of 113–190 min, and discharges peaking at 0.7 m3 s−1 and waning to 0.1 m3 s−1. Each cycle was characterized by a relatively short, high-volume flux phase during which a pulse of lava, with a well-defined flow front, would propagate down-channel, followed by a period of waning flow during which volume flux lowered. Pulses involved lava moving at relatively high velocities (up to 0.29 m s−1) and were related to some change in the flow conditions occurring up-channel, possibly at the vent. They implied either a change in the dense rock effusion rate at the source vent and/or cyclic-variation in the vesicle content of the lava changing its bulk volume flux. Pulses would generally overspill the channel to emplace pāhoehoe overflows. During periods of waning flow, velocities fell to 0.05 m s–1. Blockages forming during such phases caused lava to back up. Occasionally backup resulted in overflows of slow moving ‘a‘ā that would advance a few tens of meters down the levee flank. Compound levees were thus a symptom of unsteady flow, where overflow levees were emplaced as relatively fast moving pāhoehoe sheets during pulses, and as slow-moving ‘a‘ā units during backup. Small, localized fluctuations in channel volume flux also occurred on timescales of minutes. Volumes of lava backed up behind blockages that formed at constrictions in the channel. Blockage collapse and/or enhanced flow under/around the blockage would then feed short-lived, wave-like, down-channel surges. Real fluctuations in channel volume flux, due to pulses and surges, can lead to significant errors in effusion rate calculations. Editorial responsibility: A. Woods  相似文献   
134.
Crust formation on basaltic lava flows dictates conditions of both flow cooling and emplacement. For this reason, flow histories are dramatically different depending on whether lava is transported through enclosed lava tubes or through open channels. Recent analog experiments in straight uniform channels (Griffiths et al. J Fluid Mech 496:33–62, 2003) have demonstrated that tube flow, dictated by a stationary surface crust, can be distinguished from a mobile crust regime, where a central solid crust is separated from channel walls by crust-free shear zones, by a simple dimensionless parameter ϑ, such that ϑ<25 produces tube flow and ϑ>25 describes the mobile crust regime. ϑ combines a previously determined parameter ψ, which describes the balance between the formation rate of surface solid and the shear strain that disrupts the solid crust, with the effects of thermal convection (described by the Rayleigh number Ra).Here we explore ways in which ϑ can be used to describe the behavior of basaltic lava channels. To do this we have extended the experimental approach to examine the effects of channel irregularities (expansions, contractions, sinuosity, and bottom roughness) on crust formation and disruption. We find that such changes affect local flow behavior and can thus change channel values of ϑ. For example, gradual widening of a channel results in a decrease in flow velocity that causes a decrease in ϑ and may allow a down-flow transition from the mobile crust to the tube regime. In contrast, narrowing of the channel causes an increase in flow velocity (increasing ϑ), thus inhibiting tube formation.We also quantify the fraction of surface covered by crust in the mobile crust regime. In shallow channels, variations in crust width (d c) with channel width (W) are predicted to follow d cW 5/3. Analysis of channelized lava flows in Hawaii shows crustal coverage consistent with this theoretical result along gradually widening or narrowing channel reaches. An additional control on crustal coverage in both laboratory and basaltic flows is disruption of surface crust because of flow acceleration through constrictions, around bends, and over breaks in slope. Crustal breakage increases local rates of cooling and may cause local blockage of the channel, if crusts rotate and jam in narrow channel reaches. Together these observations illustrate the importance of both flow conditions and channel geometry on surface crust development and thus, by extension, on rates and mechanisms of flow cooling. Moreover, we note that this type of analysis could be easily extended through combined use of FLIR and LiDAR imaging to measure crustal coverage and channel geometry directly.Editorial responsibility: A. Harris  相似文献   
135.
Stefano Branca   《Geomorphology》2003,53(3-4):247-261
In this paper, the interrelationships between volcanic activity and fluvial events in the Alcantara Valley are investigated. Based on the correlation between the stratigraphy of the NE flank of Mt Etna and subsurface data, the geological and geomorphological evolutions of the valley are reconstructed. New 1:10 000 scale geological mapping shows that the bulk of this sector of the volcano is made up of the Ellittico volcano lava flows, though they are widely covered by the products of the eruptive activity of the last 15 ka. The present-day morphological setting of the Alcantara Valley is the result of two main evolutionary phases initiated during the activity of the Ellittico volcano. Only one lava flow invasion of the valley floor occurred in the first phase. This phenomenon was followed by a long period of erosional processes leading to the entrenchment of the drainage pattern and the erosion of the Ellittico lava flow. About 20–25 ka ago, an important change in the frequency of the lava flow invasions into the valley occurred associated with the final stage of the Ellittico volcano activity marking the beginning of the second phase. During this phase, volcanic processes became predominant with respect to other morphogenetic processes in the Alcantara Valley. Lava flows coming from the NE flank of the Ellittico volcano caused a radical modification of the morphological setting of this area, even though only one lava flow emitted by an eruptive fissure located within the valley partially filled the riverbed. During the eruptive activity of the last 15 ka, the complete filling of the Alcantara Valley floor occurred. In particular, between 15 and 7 ka, a lava flow originated from the Mt Moio scoria cone filled the valley floor for a distance of about 9 km. Following a short period of erosion, an eruptive fissure located within the valley generated a 20–21-km-long lava flow that was channelled along the full extent of the Alcantara Valley and stretches for about 3 km offshore in the Ionian sea. In the last 7 ka, lava flows originating from the NE-Rift zone produced only temporary damming of the riverbed without any important contribution to the filling of the Alcantara Valley.  相似文献   
136.
Tanzhuo Liu   《Geomorphology》2003,53(3-4):209-234
Rock varnish is a manganiferous dark coating ubiquitous in desert landscapes. To test the validity of varnish microstratigraphy as a chronometric indicator, varnish samples were collected from radiometrically dated and undated late Quaternary lava flows in Amboy, Cima, and Pisgah volcanic fields (AVF, CVF, PVF) in the Mojave Desert of California, western United States. Varnish microstratigraphies show a replicable layering sequence that appears to record regional climate changes that likely correspond in time to the Younger Dryas and Heinrich events in the North Atlantic region. Microstratigraphic patterns on these volcanic fields match patterns found in varnishes from other western US sites with available radiometric age constraints. Based on this regional chronology, varnishes from the A flow, H flow, and a stone pavement surface in the Cima volcanic field were estimated to be 16.5–24, 74–85, and 74–85 ka, respectively; these ages are consistent with previously published cosmogenic 3He ages of 18–20, 72–74, and 80–85 ka for these geomorphic surfaces. Varnishes from the I flow at Cima yielded a puzzling age estimate of 39 ka, which is consistent with an older 3He age of 37±6 ka reported for the I flow, but inconsistent with a younger 3He age of 31±7 ka and a cosmogenic 36Cl age of 27±1.3 ka for the same flow. Reinterpretation of the original varnish age data, with knowledge of then available field mapping results of the I flow, suggests that the I cone is polycyclic and different flow units were probably unintentionally sampled in the field. The revised varnish ages of 30 and 39 ka for the I flow thus may be in good agreement with their corresponding 3He and 36Cl ages. In a blind test of the method, varnishes from the Phase 1 flow at Pisgah, an unnamed flow (called here the I′ flow) at Cima, and the Amboy flow were estimated to be 24–30, 46–60, and 74–85 ka, respectively; these ages agree well with 36Cl ages of 22.5±1.3, 46±2, and 79±5 ka reported for the same flows by Phillips [Geomorphology (2002).]. These test results provide convincing evidence that varnish microstratigraphy, once radiometrically calibrated, can be used as a valid dating tool to estimate surface exposure ages of desert landforms in the western US drylands.  相似文献   
137.
 The Pu'u 'Ō'ō-Kūpaianaha eruption on the east rift zone of Kīlauea began in January 1983. The first 9 years of the eruption were divided between the Pu'u 'Ō'ō (1983–1986) and Kūpaianaha (1986–1992) vents, each characterized by regular, predictable patterns of activity that endured for years. In 1990 a series of pauses in the activity disturbed the equilibrium of the eruption, and in 1991, the output from Kūpaianaha steadily declined and a short-lived fissure eruption broke out between Kūpaianaha and Pu'u 'Ō'ō. In February 1992 the Kūpaianaha vent died, and, 10 days later, eruptive episode 50 began as a fissure opened on the uprift flank of the Pu'u 'Ō'ō cone. For the next year, the eruption was marked by instability as more vents opened on the flank of the cone and the activity was repeatedly interrupted by brief pauses in magma supply to the vents. Episodes 50–53 constructed a lava shield 60 m high and 1.3 km in diameter against the steep slope of the Pu'u 'Ō'ō cone. By 1993 the shield was pockmarked by collapse pits as vents and lava tubes downcut as much as 29 m through the thick deposit of scoria and spatter that veneered the cone. As the vents progressively lowered, the level of the Pu'u 'Ō'ō pond also dropped, demonstrating the hydraulic connection between the two. The downcutting helped to undermine the prominent Pu'u 'Ō'ō cone, which has diminished in size both by collapse, as a large pit crater formed over the conduit, and by burial of its flanks. Intervals of eruptive instability, such as that of 1991–1993, accelerate lateral expansion of the subaerial flow field both by producing widely spaced vents and by promoting surface flow activity as lava tubes collapse and become blocked during pauses. Received: 1 July 1997 / Accepted: 23 October 1997  相似文献   
138.
 We use a digital elevation model (DEM) derived from interferometrically processed SIR-C radar data to estimate the thickness of massive trachyte lava flows on the east flank of Karisimbi Volcano, Rwanda. The flows are as long as 12 km and average 40–60 m (up to >140 m) in thickness. By calculating and subtracting a reference surface from the DEM, we derived a map of flow thickness, which we used to calculate the volume (up to 1 km3 for an individual flow, and 1.8 km3 for all the identified flows) and yield strength of several flows (23–124 kPa). Using the DEM we estimated apparent viscosity based on the spacing of large folds (1.2×1012 to 5.5×1012 Pa s for surface viscosity, and 7.5×1010 to 5.2×1011 Pa s for interior viscosity, for a strain interval of 24 h). We use shaded-relief images of the DEM to map basic flow structures such as channels, shear zones, and surface folds, as well as flow boundaries. The flow thickness map also proves invaluable in mapping flows where flow boundaries are indistinct and poorly expressed in the radar backscatter and shaded-relief images. Received: 6 September 1997 / Accepted: 15 May 1998  相似文献   
139.
Utilizing historical accounts, field mapping, and photogeology, this paper presents a chronology of, and an analysis of magma transport during, the December 1919 to August 1920 satellitic shield eruption of Mauna Iki on the SW rift zone of Kilauea Volcano, Hawaii. The eruption can be divided into four stages based on the nature of the eruptive activity. Stage 1 consisted of the shallow injection of a dike from the summit region to the eventual eruption site 10 km downrift. During stage 2, a low ridge of pahoehoe formed in the vent area; later a large a'a flow broke out of this ridge and flowed 8.5 km SW at an average flow front velocity of 0.5 km/day. The eruption continued until mid-August producing almost exclusively pahoehoe, first as gas-rich overflows from a lava pond (stage 3), and later as denser tube-fed lava (stage 4) that reached almost 8 km from the vent at an average flow-front velocity of 0.1 km/day. Magma transport during the Mauna Iki eruption is examined using three criteria: (1) eruption characteristics and volumetric flow rates; (2) changes in the surface height of the Halemaumau lava lake; and (3) tilt measurements made at the summit of Kilauea. We find good correlation between Halemaumau lake activity and the eruptive stages. Additionally, the E-W component of summit tilt tended to mimic the lake activity. The N-S component, however, did not. Multiple storage zones in the shallow summit region probably accounted for the decoupling of E-W and N-S tilt components. Analysis of these criteria shows that at different times during the eruption, magma was either emplaced into the volcano without eruption, hydraulically drained from Halemaumau to Mauna Iki, or fed at steady-state conditions from summit storage to Mauna Iki. Volume calculations indicate that the supply rate to Kilauea during the eruption was around 3 m3/s, similar to that calculated during the Mauna Ulu and Kupaianaha shield-building eruptions, and consistent with previously determined values of long-term supply to Kilauea.  相似文献   
140.
Understanding late Holocene extinctions on islands requires accurate chronologies for all relevant events, including multiple colonisations by humans and the introduction of alien species. The most widely held hypothesis on the causes of Holocene island vertebrate extinctions incorporates human impacts, although climatic-related hypotheses cannot be excluded. Both hypotheses have been suggested to account for the extinction of the endemic Lava Mouse, Malpaisomys insularis from the Canary Islands. Here we present the first accelerator mass spectrometer (AMS) 14C ages from collagen of M. insularis bones from ancient owl pellets collected at Fuerteventura (Canary Islands, eastern Atlantic Ocean). These new dates contribute to an understanding of the extinction of this species. We are able to exclude climatic causes, predation by invasive species, and competition with the house mouse, Mus musculus. The arrival of Europeans in the Canary Islands correlates with the extinction of Malpaisomys. The introduction of rats, Rattus spp., together with their parasites and diseases, emerges as the most reasonable hypothesis explaining the extinction of M. insularis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号