首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   8篇
地球物理   55篇
天文学   24篇
  2023年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   31篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2007年   8篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  1999年   1篇
  1998年   4篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
排序方式: 共有79条查询结果,搜索用时 93 毫秒
31.

The behaviour of magnetic helicity in kinematic dynamos at large magnetic Reynolds number is considered. Hughes, et al . [ Phys. Lett. A 223 , 167-172 (1996)] observe that the relative helicity tends to zero in the limit of large magnetic Reynolds number. This paper gives upper bounds on the helicity, by relating the helicity spectrum to the energy spectrum. These bounds are confirmed by numerical simulation and the distribution of helicity over scales is considered. Although it is found that the total helicity becomes small in the limit of high conductivity, there can remain significant, but cancelling, helicity at large and small scales of the field. This is illustrated by considering the evolution of helicity in the stretch-twist-fold dynamo picture.  相似文献   
32.
Abstract

We describe a sequence of two-dimensional numerical simulations of inflection point instability in a stably stratified shear flow near the ground. The fastest growing Kelvin-Helmholtz modes are studied in detail; in particular we investigate the growth inhibiting effect of the ground which is predicted by linear theory and the Reynolds number dependence of the process of growth to finite amplitude. We consider flows which are both above and below the critical Reynolds number (Re = 300) which has been reported by Woods (1969) to mark the boundary between flows which have turbulent final states and those which do not. A global energy budget reveals a fundamental difference in character of the finite amplitude billows in these two Reynolds number regimes. However, for relatively high Reynolds numbers (Re = 103) we do not find any explicit evidence for secondary instability. Above the transition Reynolds number the modified mean flow induced by wave growth is characterized by a splitting of the original shear layer and of the in version in which it is embedded.  相似文献   
33.
We address mathematical issues raised by the so-called α?effect of dynamo theory, which is a dynamo mechanism arising in conducting flows with small scale fluctuations. Analytical results on the α?effect concern the linear induction equation, and are usually claimed to hold for the whole magnetohydrodynamics (MHD) system, as long as the amplitude of the perturbations is small. We discuss the justification of that claim, in the case of periodic fluctuations of the fields. We show a nonlinear instability result on the MHD system, that predicts dynamo action for a large class of high frequency periodic flows, up to the fully nonlinear regime.  相似文献   
34.
In this series of papers we examine magnetic reconnection in a domain where the magnetic field does not vanish and the non-ideal region is localised in space so that the reconnection is fully three dimensional. In a previous paper we presented a technique for obtaining analytical solutions to the full set of stationary resistive MHD equations and examined specific examples of non-ideal reconnective solutions. Here we further develop the model, noting that certain ideal solutions may be superimposed onto the fundamental non-ideal solutions. This provides the first analytical demonstration of a lack of coupling between reconnective and non-reconnective flows. We examine the effect of imposing various such ideal flows. Significant implications are found for the evolution of magnetic flux in the reconnection process so that several reconnection solutions may have the same reconnection rate, as defined by the integral of the parallel electric field along the reconnection line, but each appear quite different in terms of their global effect. It is shown that, in contrast to the two-dimensional case, in three dimensions there is a very wide variety of physically different steady reconnection solutions.  相似文献   
35.
We consider an unforced, incompressible, turbulent magnetofluid constrained by concentric inner and outer spherical surfaces. We define a model system in which normal components of the velocity, magnetic field, vorticity, and electric current are zero on the boundaries. This choice allows us to find a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity and current. The model dynamical system represents magnetohydrodynamic (MHD) turbulence in a spherical domain and is analyzed by the methods similar to those applied to homogeneous MHD turbulence. We find a statistical theory of ideal (i.e. no dissipation) MHD turbulence analogous to that found in the homogeneous case, including the prediction of coherent structure in the form of a large-scale quasistationary magnetic field. This MHD dynamo depends on broken ergodicity, an effect that is enhanced when total magnetic helicity is increased relative to total energy. When dissipation is added and large scales are only weakly damped, quasiequilibrium may occur for long periods of time, so that the ideal theory is still pertinent on a global scale. Over longer periods of time, the selective decay of energy over magnetic helicity further enhances the effects of broken ergodicity. Thus, broken ergodicity is an essential mechanism and relative magnetic helicity is a critical parameter in this model MHD dynamo theory.  相似文献   
36.
In this lecture, I will briefly address several phenomena expected when magnetic fields are present in the innermost regions of circumstellar accretion discs: (i) the magneto-rotational instability and related “dead zones”; (ii) the formation of magnetically-driven jets and the observational constraints derived from Classical T Tauri stars; (iii) the magnetic star–disc interactions and their expected role in the stellar spin down.It should be noted that the magnetic fields invoked here are organized large scale magnetic fields, not turbulent small scale ones. I will therefore first argue why one can safely expect these fields to be present in circumstellar accretion discs. Objects devoid of such large scale fields would not be able to drive jets. A global picture is thus gradually emerging where the magnetic flux is an important control parameter of the star formation process as a whole. High angular resolution technics, by probing the innermost circumstellar disc regions should provide valuable constraints.  相似文献   
37.
In the present work, an integral equation approach is developed to solve two-dimensional incompressible resistive magnetohydrodynamic equations. This approach is examined by simulating the magnetic reconnection driven by the Orszag–Tang vortex and the doubly periodic coalescence instability. The results show that when the viscosity and magnetic resistivity of the plasma are reduced, the current sheet forming in the magnetic reconnection driven by the Orszag–Tang vortex becomes thinner. In comparison with the spectral method, the integral equation approach has much better accuracy and convergence.  相似文献   
38.
在一维球坐标系下模拟了1998年11月4日至5日3个连续日冕物质抛射(CME)在行星际空间的传播和相互作用并最终形成“复杂抛射”的日地传输过程.首先在磁流体力学(MHD)数值模拟中应用Harten总变差减小(TVD)格式,通过调节计算模型中的引力无量纲参数α、等离子体参数β和气体多方指数γ,构造出数值计算所需的初态背景,使之在拉格朗日点处L1的太阳风速度vr、质子数密度Np及质子热压力与磁压力的比值βp与ACE卫星的观测数据一致.接着仅采用速度脉冲的扰动形式,其输入的幅度和持续时间由Lasco/C2、GOES、LEAR的观测数据并结合Michalek等提出的CME“锥模型”来确定.数值计算结果得到的两个激波到达时间和ACE卫星观测值的时间误差分别是3h和4h.这表明该模型能估算续发CME在行星际空间演化后驱动激波的到达时间和大致强度,在空间天气的激波到达时间的预报方面有潜在的应用价值.  相似文献   
39.
40.
We present new analytical three-dimensional solutions of the magnetohydrostatic equations, which are applicable to the co-rotating frame of reference outside a rigidly rotating cylindrical body, and have potential applications to planetary magnetospheres and stellar coronae. We consider the case with centrifugal force only, and use a transformation method in which the governing equation for the “pseudo-potential” (from which the magnetic field can be calculated) becomes the Laplace partial differential equation. The new solutions extend the set of previously found solutions to those of a “fractional multipole” nature, and offer wider possibilities for modelling than before. We consider some special cases, and present example solutions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号