首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1069篇
  免费   16篇
  国内免费   15篇
测绘学   24篇
大气科学   4篇
地球物理   65篇
地质学   52篇
海洋学   3篇
天文学   912篇
综合类   5篇
自然地理   35篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   14篇
  2020年   3篇
  2019年   3篇
  2018年   8篇
  2017年   5篇
  2016年   4篇
  2015年   2篇
  2014年   5篇
  2013年   10篇
  2012年   10篇
  2011年   129篇
  2010年   171篇
  2009年   116篇
  2008年   128篇
  2007年   77篇
  2006年   104篇
  2005年   85篇
  2004年   76篇
  2003年   42篇
  2002年   32篇
  2001年   10篇
  2000年   11篇
  1999年   17篇
  1998年   9篇
  1997年   8篇
  1996年   5篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1985年   1篇
排序方式: 共有1100条查询结果,搜索用时 312 毫秒
21.
The MER rover Opportunity has carried out the first outcrop-scale investigation of ancient sedimentary rocks on Mars. The rocks, exposed in craters and along fissures in Meridiani Planum, are sandstones formed via the erosion and re-deposition of fine grained siliciclastics and evaporites derived from the chemical weathering of olivine basalts by acidic waters. A stratigraphic section more than seven meters thick measured in Endurance crater is dominated by eolian dune and sand sheet facies; the uppermost half meter, however, exhibits festoon cross lamination at a length scale that indicates subaqueous deposition, likely in a playa-like interdune setting. Silicates and sulfate minerals dominate outcrop geochemistry, but hematite and Fe3D3 (another ferric iron phase) make up as much as 11% of the rocks by weight. Jarosite in the outcrop matrix indicates precipitation at low pH. Cements, hematitic concretions, and crystal molds attest to a complex history of early diagenesis, mediated by ambient ground waters. The depositional and early diagenetic paleoenvironment at Meridiani was arid, acidic, and oxidizing, a characterization that places strong constraints on astrobiologial inference.  相似文献   
22.
New data returned from the Mars Exploration Rover (MER) mission have revealed abundant evaporites in the sedimentary record at Meridiani Planum. A working hypothesis for Meridiani evaporite formation involves the evaporation of fluids derived from the weathering of martian basalt and subsequent diagenesis. On Earth, evaporite formation in exclusively basaltic settings is rare. However, models of the evaporation of fluids derived from experimentally weathering synthetic martian basalt provide insight into possible formation mechanisms. The thermodynamic database assembled for this investigation includes both Fe2+ and Fe3+ in Pitzer's ion interaction equations to evaluate Fe redox disequilibrium at Meridiani Planum. Modeling results suggest that evaporation of acidic fluids derived from weathering olivine-bearing basalt should produce Mg, Ca, and Fe-sulfates such as jarosite and melanterite. Calculations that model diagenesis by fluid recharge predict the eventual breakdown of jarosite to goethite as well as the preservation of much of the initial soluble evaporite component at modeled porosity values appropriate for relevant depositional environments (< 0.30). While only one of several possible formation scenarios, this simple model is consistent with much of the chemical and mineralogical data obtained on Meridiani Planum outcrop.  相似文献   
23.
Martian Topography: Scaling, Craters, and High-Order Statistics   总被引:1,自引:0,他引:1  
The high-order structure functions of Mars topography reveal three specific ranges of scales: (1) scaling range at small scales where the structure functions exhibit scaling behavior; (2) transition range where the structure functions continue to grow but do not reveal scaling; and (3) saturation range at large scales where the structure functions saturate. The scaling and saturation ranges are explored in detail in respect to scaling and intermittency. Analysis of the Mars Orbiter Laser Altimeter (MOLA) data and computer simulations suggest that there are two potential contributors to the small-scale scaling: (i) scale-invariant surface formation; and (ii) effects of discrete morphological forms such as craters. The crater effect also provides an explanation for the large-scale intermittency revealed using the normalized structure functions within the saturation range, which cannot be explained by the ‘scale-invariant’ concept. Overall, the obtained results suggest that the “crater” contribution to the structure function behavior often dominates over the effect of the scale-invariant surface formation.  相似文献   
24.
于雯  李雄耀  王世杰 《岩石学报》2016,32(1):99-106
在真空条件下矿物粉末热导率的实验测量,可为我们研究月球及行星表面的热属性和热演化,解译热红外和微波探测数据,开展月球及行星探测载荷设计提供重要的数据参数。本研究主要采用改造后的Hot Disk TPS 2500S导热仪对辉石粉末的热导率进行测量。同时,分析了真空度、温度对辉石粉末热导率的影响。实验结果表明:1)热导率随着真空度的降低呈下降趋势,大气压力在1000Pa时,辉石粉末热传导机制发生明显改变。在低压条件下(1000Pa)热导率随真空度的变化趋于平缓;2)辉石粉末热导率随温度的升高而增大,但是增大的幅度在低压和常压条件下存在明显差异。根据实验结果,提出了低压条件下辉石粉末热导率随真空度和温度变化的关系式。本研究表明,在月球和火星表面热环境的研究中,温度和压力对热导率的影响程度是不同的。上述结果对未来开展地外样品的热导率测量提供了重要的参考。  相似文献   
25.
《Sedimentology》2018,65(1):96-122
This paper characterizes the detailed sedimentology of a fluvial sandbody on Mars for the first time and interprets its depositional processes and palaeoenvironmental setting. Despite numerous orbital observations of fluvial landforms on the surface of Mars, ground‐based characterization of the sedimentology of such fluvial deposits has not previously been possible. Results from the NASA Mars Science Laboratory Curiosity rover provide an opportunity to reconstruct at fine scale the sedimentary architecture and palaeomorphology of a fluvial environment on Mars. This work describes the grain size, texture and sedimentary facies of the Shaler outcrop, reconstructs the bedding architecture, and analyses cross‐stratification to determine palaeocurrents. On the basis of bedset geometry and inclination, grain‐size distribution and bedform migration direction, this study concludes that the Shaler outcrop probably records the accretion of a fluvial barform. The majority of the outcrop consists of large‐scale trough cross‐bedding of coarse sand and granules. Palaeocurrent analyses and bedform reconstruction indicate that the beds were deposited by bedforms that migrated towards the north‐east, across the surface of a bar that migrated south‐east. Stacked cosets of dune cross‐bedding suggest aggradation of multiple bedforms, which provides evidence for short periods of sustained flow during Shaler deposition. However, local evidence for aeolian reworking and the presence of potential desiccation cracks within the outcrop suggest that fluvial deposition may have been intermittent. The uppermost strata at Shaler are distinct in terms of texture and chemistry and are inferred to record deposition from a different sediment dispersal system with a contrasting provenance. The outcrop as a whole is a testament to the availability of liquid water on the surface of Mars in its early history.  相似文献   
26.
The secondary mineral budget on Earth is dominated by clay minerals, Al-hydroxides, and Fe-oxides, which are formed under the moderate pH, high water-to-rock ratio conditions typical of Earth's near-surface environment. In contrast, geochemical analyses of rocks and soils from landed missions to Mars indicate that secondary mineralogy is dominated by Mg (± Fe, Ca)-sulfates and Fe-oxides. This discrepancy can be explained as resulting from differences in the chemical weathering environment of Earth and Mars. We suggest that chemical weathering processes on Mars are dominated by: (1) a low-pH, sulfuric acid-rich environment in which the stoichiometric dissolution of labile mineral phases such as olivine and apatite (± Fe–Ti oxides) is promoted; and (2) relatively low water-to-rock ratio, such that other silicate phases with slower dissolution rates (e.g., plagioclase, pyroxene) do not contribute substantially to the secondary mineral budget at the Martian surface. Under these conditions, Al-mobilization is limited, and the formation of significant Al-bearing secondary phases (e.g., clays, Al-hydroxides, Al-sulfates) is inhibited. The antiquity of rock samples analyzed in-situ on Mars suggest that water-limited acidic weathering conditions have more than likely been the defining characteristic of the Martian aqueous environment for billions of years.  相似文献   
27.
海潮负荷对自由核章动参数拟合的影响   总被引:3,自引:1,他引:3  
基于武汉基准台超导重力仪重力潮汐观测资料 ,利用根据不同海潮模型获得的负荷重力改正值对观测数据作海潮改正 ,拟合了地球自由核章动 ( FCN)共振参数。结果表明 FCN的本征周期为 435 .2恒星日 ,品质因子为 4730 ,复共振强度为 ( - 6.34× 1 0 - 4,- 0 .0 9× 1 0 - 4)°/h。不同的海潮模型对 FCN本征周期和共振强度实部计算结果的影响很小 ,差异分别不超过± 1 .6%和± 7.7% ,对品质因子 Q值和共振强度虚部拟合结果的影响非常显著。基于 Ori96全球海潮模型得到的重力改正值可以很好地解释武汉基准台周日重力潮汐观测残差。  相似文献   
28.
29.
Investigating the ancient Martian magnetic field using microwaves   总被引:1,自引:0,他引:1  
The new microwave palaeointensity technique has been used to investigate samples from the Martian meteorite Nakhla. This technique is a promising new way to obtain absolute palaeointensity information regarding the ancient Martian magnetic field as recorded by the Martian meteorites. Assuming that a part of the magnetic remanence is of thermal origin and originating on Mars the two samples studied yield estimates of 4 μT for the Martian magnetic field at 1.35 Ga.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号