首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1293篇
  免费   205篇
  国内免费   15篇
测绘学   4篇
大气科学   3篇
地球物理   1040篇
地质学   208篇
海洋学   7篇
天文学   3篇
综合类   33篇
自然地理   215篇
  2023年   10篇
  2022年   17篇
  2021年   30篇
  2020年   15篇
  2019年   24篇
  2018年   19篇
  2017年   32篇
  2016年   18篇
  2015年   28篇
  2014年   47篇
  2013年   51篇
  2012年   33篇
  2011年   49篇
  2010年   52篇
  2009年   56篇
  2008年   63篇
  2007年   84篇
  2006年   89篇
  2005年   72篇
  2004年   84篇
  2003年   64篇
  2002年   59篇
  2001年   45篇
  2000年   44篇
  1999年   43篇
  1998年   38篇
  1997年   35篇
  1996年   50篇
  1995年   35篇
  1994年   46篇
  1993年   36篇
  1992年   42篇
  1991年   25篇
  1990年   24篇
  1989年   11篇
  1988年   10篇
  1987年   5篇
  1986年   9篇
  1985年   6篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   4篇
  1954年   1篇
排序方式: 共有1513条查询结果,搜索用时 204 毫秒
971.
蛇纹石脱水与大洋俯冲带中源地震(70~300km)的关系   总被引:4,自引:2,他引:4  
余日东  金振民 《地学前缘》2006,13(2):191-204
蛇纹石脱水致裂作用是诱发大洋俯冲带中源地震(70~300km)的一种重要成因机制,它与中等深度双地震带的形成有很密切的关系。双地震带在冷俯冲带中是一种常见现象,它由上下相距20~40km的两个平行地震层组成。上地震层位于俯冲洋壳中,可能是洋壳蓝片岩脱水形成榴辉岩的系列脱水反应诱发了地震;下地震层位于大洋俯冲地幔中,可能是部分交代的地幔橄榄岩脱水控制着中源地震的分布。蛇纹岩在高温高压条件下的变形实验证实蛇纹石在脱水过程中引起岩石弱化和脆性破裂,这已经得到了对蛇纹石脱水过程中岩石物理性质和变形后样品的显微构造等理论研究上的支持。在蛇纹石脱水过程中,产生的流体与固体残留物分离,形成了大量的I型(张性)微裂隙,最终导致岩石破裂和形成断层。根据叶蛇纹石脱水反应相图,理论上在大洋俯冲带中蛇纹石脱水位置会出现双层结构,但只有平行于俯冲板块顶层等温线的一支才可能脱水诱发地震,并对应于双地震带的下地震层。下地震层所处的位置具有低的vp/vs值,暗示岩石圈大洋地幔顶层发生了部分交代。但它的交代机制尚不清楚,可能是海水通过洋底转换断层和/或沿着在外海沟隆起中形成的断层渗入大洋地幔顶层,并发生了洋壳和大洋地幔交代。双地震带在120~200km深度合一以后,冷俯冲带中所发生的中源地震可能与蛇纹石脱水有关,在热俯冲带中更可能与“湿”榴辉岩脱水有关。  相似文献   
972.
ZHANG Heng's Seismometer and Longxi earthquake in AD 134   总被引:1,自引:0,他引:1  
  相似文献   
973.
Recent seismic events for which macroseismic intensities and accelerometric records are simultaneously available are investigated in order to derive empirical relationships between intensities and ground accelerations. 20 events with local magnitudes 3.0 to 5.4 are selected in a single country (France), in order to have homogeneous intensity data. Records are obtained in about 50 stations. Relationships are first established between intensities, magnitudes and distances on one side, between S-wave horizontal peak ground accelerations (PGA), magnitudes and distances R on the other side. They show that the PGA decays with distance roughly as R −2, in agreement with previous studies, and that PGA and intensities lead to different attenuation models. An intensity-acceleration relationship is established from direct observations, and from a combination of the previous relationships. It reveals that the intensity felt depends not only on the PGAs, but also on the distance. This may be explained by the frequency dependent attenuation of the waves, and by a different sensitivity of humans to the different frequencies. The influence of frequency on the felt intensity is then investigated, and a relation between intensity, PGA and frequency is established. It shows that the acceleration needed to be felt with a given intensity is larger at high frequency than at low frequency.Finally, as sound also contributes to earthquake perception, the P-wave displacement is analysed in an attempt to find in which conditions a perceptible sound is generated. The perturbation in air pressure induced by the P-wave is compared to the threshold of hearing in two frequency ranges, 20–40 Hz and 40–60 Hz. The maximum distance of perceptibility as a function of magnitude deduced from the P-wave displacement alone is found to be below the experimental distances of perception reported in the macroseismic enquiries.  相似文献   
974.
Calibration of the Tibetan Plateau Using Regional Seismic Waveforms   总被引:3,自引:0,他引:3  
We use the recordings from 51 earthquakes produced by a PASSCAL deployment in Tibet to develop a two-layer crustal model for the region. Starting with their ISC locations, we iteratively fit the P-arrival times to relocate the earthquakes and estimate mantle and crustal seismic parameters. An average crustal P velocity of 6.2–6.3 km/s is obtained for a crustal thickness of 65 km while the P velocity of the uppermost mantle is 8.1 km/s. The upper layer of the model is further fine-tuned by obtaining the best synthetic SH waveform match to an observed waveform for a well-located event. Green's functions from this model are then used to estimate the source parameters for those events using a grid search procedure. Average event relocation relative to the ISC locations, excluding two poorly located earthquakes, is 16 km. All but one earthquake are determined by the waveform inversion to be at depths between 5 and 15 km. This is 15 km shallower, on average, than depths reported by the ISC. The shallow seismicity cut-off depth and low crustal velocities suggest high temperatures in the lower crust. Thrust faulting source mechanisms dominate at the margins of the plateau. Within the plateau, at locations with surface elevations less than 5 km, source mechanisms are a mixture of strike-slip and thrust. Most events occurring in the high plateau where elevations are above 5 km show normal faulting. This indicates that a large portion of the plateau is under EW extension.  相似文献   
975.
Archaeological techniques and methodology are used to identify seismic traces and disorders in ancient buildings. Clear evidence could be identified as direct seismic consequences or as communities’ technical answers for repair or reinforcement of buildings in order to reduce their vulnerability. This methodology is called “archaeological reading of buildings.” It is based on the identification of different construction phases, modifications and past events (human actions or natural phenomena) suffered by buildings during their life. The data read from the buildings are successively observed, identified, described, and recorded, following the principal of archaeological stratigraphy, in order to explain the buildings history. The seismic pathologies are identified according to detailed engineering knowledge of the behaviour of buildings during seismic motion. In this case study, our approach is applied to the historical city of Manosque, located in a seismic area along the “Moyenne–Durance” active fault. As a result of historical researches (Quenet G, Baumont D, Scotti O, Levret A, Ann Geophys, 47(2/3):583–595, 2004), many historical documents gave evidence about this earthquake’s effects. Among these documents, was an exceptional one: the record of a survey made in Manosque by bricklayers a few days after the 14th August 1708 shock. This gave us specific information concerning the seismic damage caused in the town of Manosque and was the starting point to validate the method. In the present paper, the archaeological reading of buildings method is illustrated by two specific cases: the Charité building in Manosque and the Sainte-Agathe chapel in Saint-Maime village. The buildings suffered various modifications during many centuries. This complicates the application of the method, however the observations made from the buildings correlate well with the indications deduced from written sources, validating our approach. The study highlights the necessity to cross correlate different field data in the frame of a multidisciplinary approach in order to obtain valuable results concerning details of seismic damage, its approximate dating by architectural chronology and the communities’ reaction in terms of repairs and reinforcement techniques.  相似文献   
976.
Regional and local factors in attenuation modelling: Hong Kong case study   总被引:1,自引:0,他引:1  
Seismic attenuation behaviour is controlled by a large number of wave modification mechanisms. The characteristics of some of these mechanisms are specific to a local area, whilst the remainder can be generalised to the entire seismic region. Factors representing these mechanisms are often not resolved. A new attenuation modelling approach is demonstrated in this paper (using Hong Kong as a case study), to evaluate individual regional and local wave modification factors. Shear wave velocity (SWV) information for the four prevalent geological formations found in Hong Kong was first obtained: (a) at shallow depths from instrumented boreholes; (b) at depths of up to 100–200 m from measurements using the Microtremor SPatial Auto-Correlation (SPAC) technique; (c) at depths of up to 1.5 km from the monitoring of quarry blasts; and (d) at depths from 1.5 to 8 km in the hard basement rock layers from results of seismological refraction surveys. The upper-crust amplification factor calculated from the four modelled rock SWV profiles was then combined with predicted attenuation parameters to determine the upper-crust modification factor (filter function) incorporating the local wave modification characteristics associated with Hong Kong geological formations. Such functions may then be combined with the regional attenuation characteristics in that part of the South China region. A seismic attenuation model was developed by combining the upper-crust modification factor with the regional source function of intra-plate earthquakes, based on stochastic simulations. The ground shaking model developed from the presented methodology is supported by the comparison with macro-seismic data of seven historical earthquake events affecting Hong Kong.  相似文献   
977.
978.
We respond to the comments by Douglas regarding our earlier paper by emphasizing that our automated method was intended to distinguish between the primary and auxiliary fault planes in earthquake focal mechanisms and does not always produce reliable results for rupture velocity and rupture length.  相似文献   
979.
Polar motion is modelled for the large 2004 Sumatra earthquake via dislocation theory for an incompressible elastic earth model, where inertia perturbations are due to earthquake-triggered topography of density–contrast interfaces, and for a compressible model, where inertia perturbation due to compression-dilatation of Earth's material is included; density and elastic parameters are based on a multilayered reference Earth. Both models are based on analytical Green's functions, propagated from the centre to the Earth's surface. Preliminary and updated seismological solutions are considered in elucidating the effects of improving earthquake parameters on polar motion. The large Sumatra thrust earthquake was particularly efficient in driving polar motion since it was responsible for large material displacements occurring orthogonally to the strike of the earthquake and to the Earth's surface, as imaged by GRACE gravity anomalies over the earthquake area. The effects of earthquake-induced topography are four times larger than the effects of Earth's compressibility, for l = 2 geopotential components. For varying compressional Earth properties and seismic solution, modelled polar motion ranges from 8.6 to 9.4 cm in amplitude and between 117° and 130° east longitude in direction. The close relationship between polar motion direction, earthquake longitude and thrust nature of the event, are established in terms of basic physical concepts.  相似文献   
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号