首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   303篇
  免费   12篇
  国内免费   28篇
测绘学   2篇
大气科学   1篇
地球物理   19篇
地质学   78篇
海洋学   2篇
天文学   231篇
综合类   3篇
自然地理   7篇
  2022年   5篇
  2021年   6篇
  2020年   4篇
  2019年   14篇
  2018年   3篇
  2017年   6篇
  2016年   10篇
  2015年   4篇
  2014年   8篇
  2013年   8篇
  2012年   6篇
  2011年   64篇
  2010年   39篇
  2009年   25篇
  2008年   20篇
  2007年   19篇
  2006年   24篇
  2005年   18篇
  2004年   17篇
  2003年   13篇
  2002年   10篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1998年   5篇
  1993年   2篇
  1992年   3篇
排序方式: 共有343条查询结果,搜索用时 296 毫秒
91.
Back scattered electron and transmission electron imaging of lunar soil grains reveal an abundance of submicrometer-sized pure Fe0 globules that occur in the rinds of many soil grains and in the submillimeter sized vesicular glass-cemented grains called agglutinates. Grain rinds are amorphous silicates that were deposited on grains exposed at the lunar surface from transient vapors produced by hypervelocity micrometeorite impacts. Fe0 may have dissociated from Fe-compounds in a high temperature (>3000°C) vapor phase and then condensed as globules on grain surfaces. The agglutinitic glass is a quenched product of silicate melts, also produced by micrometeorite impacts on lunar soils. Reduction by solar wind hydrogen in agglutinitic melts may have produced immiscible droplets that solidified as globules. The exact mechanism of formation of such Fe0 globules in lunar soils remains unresolved.  相似文献   
92.
Clementine was a technology demonstration mission jointly sponsored by the Department of Defense (DOD) and NASA that was launched on January 25th, 1994. Its principal objective was to use the Moon, a near-Earth asteroid, and the spacecraft’s Interstage Adapter as targets to demonstrate lightweight sensor performance and several innovative spacecraft systems and technologies. The design, development, and operation of the Clementine spacecraft and ground system was performed by the Naval Research Laboratory. For over two months Clementine mapped the Moon, producing the first multispectral global digital map of the Moon, the first global topographic map, and contributing several other important scientific discoveries, including the possibility of ice at the lunar South Pole. New experiments or schedule modifications were made with minimal constraints, maximizing science return, thus creating a new paradigm for mission operations. Clementine was the first mission known to conduct an in-flight autonomous operations experiment. After leaving the Moon, Clementine suffered an onboard failure that caused cancellation of the asteroid rendezvous. Despite this setback, NASA and the DOD applied the lessons learned from the Clementine mission to later missions. Clementine set the standard against which new small spacecraft missions are commonly measured. More than any other mission, Clementine has the most influence (scientifically, technically, and operationally) on the lunar missions being planned for the next decade.  相似文献   
93.
Lunar geochemistry as told by lunar meteorites   总被引:7,自引:0,他引:7  
About 36 lunar meteorites have been found in cold and hot deserts since the first one was found in 1979 in Antarctica. All are random samples ejected from unknown locations on the Moon by meteoroid impacts. Lithologically and compositionally there are three extreme types: (1) brecciated anorthosites with high Al2O3 (26–31%), low FeO (3–6%), and low incompatible elements (e.g., <1 μg/g Th), (2) basalts and brecciated basalts with high FeO (18–22%), moderately low Al2O3 (8–10%) and incompatible elements (0.4–2.1 μg/g Th), and (3) an impact-melt breccia of noritic composition (16% Al2O3, 11% FeO) with very high concentrations of incompatible elements (33 μg/g Th), a lithology that is identified as KREEP on the basis of its similarity to Apollo samples of that designation. Several meteorites are polymict breccias of intermediate composition because they contain both anorthosite and basalt. Despite the large range in compositions, a variety of compositional parameters together distinguish lunar meteorites from terrestrial materials. Compositional and petrographic data for lunar meteorites, when combined with mineralogical and compositional data obtained from orbiting spacecraft in the 1990s, suggest that Apollo samples identified with the magnesian (Mg-rich) suite of nonmare rocks (norite, troctolite, dunite, alkali anorthosite, and KREEP) are all products of a small, geochemically anomalous (noritic, high Th) region of crust known as the Procellarum KREEP Terrane and are not, as generally assumed, indigenous to the vast expanse of typical feldspathic crust known as the Feldspathic Highlands Terrane. Magnesian-suite rocks such as those of the Apollo collection do not occur as clasts in the feldspathic lunar meteorites. The misconception is a consequence of four historical factors: (1) the Moon has long been viewed as simply bimodal in geology, mare or highlands, (2) one of the last, large basin-forming bolides impacted in the Procellarum KREEP Terrane, dispersing Th-rich material, (3) although it was not known at the time, the Apollo missions all landed in or near the anomalous Procellarum KREEP Terrane and collected many Th-rich samples formed therein, and (4) the Apollo samples were interpreted and models for lunar crust formation developed without recognition of the anomaly because global data provided by orbiting missions and lunar meteorites were obtained only years later.  相似文献   
94.
Magmatic iron meteorites are considered to be remnants of the metallic cores of differentiated asteroids, and may be used as analogues of planetary core formation. The Fe isotope compositions (δ57/54Fe) of metal fractions separated from magmatic and non-magmatic iron meteorites span a total range of 0.39‰, with the δ57/54Fe values of metal fractions separated from the IIAB irons (δ57/54Fe 0.12 to 0.32‰) being significantly heavier than those from the IIIAB (δ57/54Fe 0.01 to 0.15‰), IVA (δ57/54Fe − 0.07 to 0.17‰) and IVB groups (δ57/54Fe 0.06 to 0.14‰). The δ57/54Fe values of troilites (FeS) separated from magmatic and non-magmatic irons range from − 0.60 to − 0.12‰, and are isotopically lighter than coexisting metal phases. No systematic relationships exist between metal-sulphide fractionation factor (Δ57/54FeM-FeS = δ57/54Femetal − δ57/54FeFeS) metal composition or meteorite group, however the greatest Δ57/54FeM-FeS values recorded for each group are strikingly similar: 0.79, 0.63, 0.76 and 0.74‰ for the IIAB, IIIAB, IAB and IIICD irons, respectively. Δ57/54FeM-FeS values display a positive correlation with kamacite bandwidth, i.e. the most slowly-cooled meteorites, which should be closest to diffusive equilibrium, have the greatest Δ57/54FeM-FeS values. These observations provide suggestive evidence that Fe isotopic fractionation between metal and troilite is dominated by equilibrium processes and that the maximum Δ57/54FeM-FeS value recorded (0.79 ± 0.09‰) is the best estimate of the equilibrium metal-sulphide Fe isotope fractionation factor. Mass balance models using this fractionation factor in conjunction with metal δ57/54Fe values and published Fe isotope data for pallasites can explain the relatively heavy δ57/54Fe values of IIAB metals as a function of large amounts of S in the core of the IIAB parent body, in agreement with published experimental work. However, sequestering of isotopically light Fe into the S-bearing parts of planetary cores cannot explain published differences in the average δ57/54Fe values of mafic rocks and meteorites derived from the Earth, Moon and Mars and 4-Vesta. The heavy δ57/54Fe value of the Earth's mantle relative to that of Mars and 4-Vesta may reflect isotopic fractionation due to disproportionation of ferrous iron present in the proto-Earth mantle into isotopically heavy ferric iron hosted in perovskite, which is released into the magma ocean, and isotopically light native iron, which partitions into the core. This process cannot take place at significant levels on smaller planets, such as Mars, as perovskite is only stable at pressures > 23 GPa. Interestingly, the average δ57/54Fe values of mafic terrestrial and lunar samples are very similar if the High-Ti mare basalts are excluded from the latter. If the Moon's mantle is largely derived from the impactor planet then the isotopically heavy signature of the Moon's mantle requires that the impacting planet also had a mantle with a δ57/54Fe value heavier than that of Mars or 4-Vesta, which then implies that the impactor planet must have been greater in size than Mars.  相似文献   
95.
Portions of the Moon were observed by the Wisconsin Ultraviolet Photopolarimeter Experiment ( WUPPE ) on 1995 March 12, 14 and 17, and represent the first ultraviolet (UV) spectropolarimetric observations of the Moon. The polarimetric observations confirm that a change in the dominant scattering process occurs in the UV, changing from volume scattering in the near-UV to surface scattering in the far-UV. The data are investigated empirically. It is found that Umov's relationship holds when the polarization is perpendicular to the scattering plane. It is also found that the degree of polarization can be modelled by a phase-angle-dependent polarization modified by a wavelength-dependent depolarization factor. The scattering function for each observation is determined.  相似文献   
96.
We report on observations of the full Moon brightness temperature covering the frequency range of 300-950 GHz, and also on observations of the lunar eclipse of July 16, 2000, though only covering the frequency range of 165-365 GHz due to poor atmospheric transmission at higher frequencies. All observations were performed from the summit of Mauna Kea (HI) using a Fourier Transform Spectrometer mounted on the Caltech Submillimeter Observatory and supplemented by measurements of the atmospheric opacity using a 183 GHz Water Vapor Monitor. The telescope was pointed to the center of the lunar disk (with a footprint of ∼45-15 km on the Moon at 300 through 900 GHz). In order to obtain the correct values of the Moon brightness temperatures at all frequencies we carefully corrected for the atmospheric absorption, which varies across the submillimeter domain. This correction is fully described. The measured pre-eclipse brightness temperature is around 337 K in the 165-365 GHz range. This temperature slightly increases with frequency to reach ∼353 K at 950 GHz, according to previous broader band data. The magnitude of the temperature drop observed during the eclipse at 265 GHz (central frequency of the band covered) was about ∼70 K, in very good agreement with previous millimeter-wave measurements of other lunar eclipses. We detected, in addition, a clear frequency trend in the temperature drop that has been compared to a thermal and microwave emission model of the lunar regolith, with the result of a good match of the relative flux drop at different frequencies between model and measurements.  相似文献   
97.
Jörg Fritz  Roald Tagle 《Icarus》2007,189(2):591-594
A late Eocene asteroid shower to the Earth-Moon system resulted in an increased flux of impact ejected 3He-rich lunar matter to Earth, which is recorded by a 2 Ma enduring 3He-anomaly in marine sediments.  相似文献   
98.
Enhancements of the Na emission and temperature from the lunar atmosphere were reported during the Leonid meteor showers of 1995, 1997 and 1998. Here we report a search for similar enhancement during the 1999 Quadrantids, which have the highest mass flux of any of the major streams. No enhancements were detected. We suggest that different chemical–physical properties of the Leonid and Quadrantid streams may be responsible for the difference.  相似文献   
99.
Optical and near-IR signatures of water ice on the Moon's surface were sought in the permanently shadowed regions near its poles. Significant amounts of multiply-scattered radiation partly illuminate primary shadows cast by craters and other features. If there is water ice in the permanently shadowed regions of the Moon's surface, its spectral signature should appear in this multiply-scattered light. This investigation can be done most effectively with observations obtained by spacecraft, because most selenocentric positions occupied by the Earth will also be occupied by the Sun at some point in time, and because the lunar poles are seen only obliquely to a terrestrial observer. Images obtained by Clementine are particularly well-suited to this task, because the spacecraft's polar orbit allowed images of the poles to be acquired on nearly every orbit, resulting in literally thousands of images taken within a few degrees of each pole, and because the filters on the ultraviolet-visual camera (UVVIS) and the near infrared camera (NIR) occur at major absorption bands or within important continuum features of water ice. Approximately 5800 images obtained by the UVVIS camera and 1800 images obtained by the NIR camera were calibrated and combined into coadded mosaics to create multispectral maps of the lunar poles with the highest possible signal-to-noise. Unfortunately, analysis of our UVVIS mosaics indicates that any possible signal from multiply-scattered light in primary shadows was overwhelmed by instrumental stray light. For the NIR camera, we were able to determine the normalized reflectance of several regions that were identified by Margot et al. (1999, Science284, 1658-1660) as permanent shadows. We have identified one permanently shadowed crater with a 1.5-μm band spectral signature indicative of between 2.5 and 21% fractional coverage of H2O frost. However, the same region shows a 2.0 μm spectral signature that is inconsistent with the presence of any water.  相似文献   
100.
In this treatise the well‐known 2‐body problem with a rotating central body is systematically reinvestigated on the basis of the Projective Unified Field Theory (PUFT) under the following aspects (including the special case of the Newton mechanics): First, equation of motion with abstract additional terms being appropriate for the interpretation of the various effects under discussion: tidal friction effect as well as non‐tidal effects (e.g. rebound effect as temporal variation of the moment of inertia of the rotating body, general‐relativistic Lense‐Thirring effect, new scalaric effects of cosmological origin, being an outcome of the scalarity phenomenon of matter (PUFT). Second, numerical evaluation of the theory. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号