首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15978篇
  免费   3434篇
  国内免费   3205篇
测绘学   234篇
大气科学   988篇
地球物理   2758篇
地质学   11484篇
海洋学   2295篇
天文学   20篇
综合类   710篇
自然地理   4128篇
  2024年   80篇
  2023年   304篇
  2022年   701篇
  2021年   807篇
  2020年   734篇
  2019年   917篇
  2018年   761篇
  2017年   919篇
  2016年   951篇
  2015年   903篇
  2014年   1124篇
  2013年   1217篇
  2012年   1075篇
  2011年   1093篇
  2010年   926篇
  2009年   1115篇
  2008年   1084篇
  2007年   1170篇
  2006年   1009篇
  2005年   846篇
  2004年   750篇
  2003年   683篇
  2002年   491篇
  2001年   424篇
  2000年   421篇
  1999年   382篇
  1998年   260篇
  1997年   265篇
  1996年   221篇
  1995年   189篇
  1994年   191篇
  1993年   132篇
  1992年   143篇
  1991年   101篇
  1990年   66篇
  1989年   48篇
  1988年   36篇
  1987年   8篇
  1986年   15篇
  1985年   11篇
  1984年   7篇
  1983年   4篇
  1982年   4篇
  1981年   10篇
  1980年   6篇
  1979年   8篇
  1977年   2篇
  1976年   1篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
291.
天山奎屯河哈希勒根51号冰川表面运动特征分析   总被引:14,自引:14,他引:14  
奎屯河哈希勒根51号冰川位于新疆奎屯市以南的天山依连哈比尔尕山北坡, 奎屯河上游支沟哈希勒根河源区. 1999年8月, 在该冰川上布设了用于冰川运动和冰川物质平衡观测研究的测杆18根, 并进行了冰川表面运动、冰川物质平衡和冰川末端变化的首次观测. 根据2000年8月和2001年8月的冰川运动观测资料, 分析了奎屯河哈希勒根51号冰川的运动特征和冰舌末端的变化状况. 结果表明: 奎屯河51号冰川应属于亚大陆型冰川; 1999/2000年度和2000/2001年度的表面运动值不大, 最大流速点的年运动速度为3.15 ma-1; 运动速度垂直分量UZ的变化规律同乌鲁木齐河源1号冰川的变化规律相同, 即消融区的显出流作用和积累区的显入流作用. 该冰川的冰舌末端处于相对稳定的退缩状态, 1964-1999年间平均退缩量约为1.4 m*a-1, 而1999-2001年间的平均退缩量为5.0 m*a-1, 反映出冰川退缩增大的趋势.  相似文献   
292.
十万山盆地位于广西西南部,大地构造位置属于华南板块的西北缘,是在华南板块与杨子板块拼接的加里东运动之后,早古生代华南洋再一次打开形成被动大陆边缘。晚二叠世末,该地区变成孤后盆地,进一步转化成前陆盆地。在盆山转换过程中,经历了三次沉积-构造盆山转换过程:泥盆纪-二早叠世分地新生与被动大陆边缘拉张裂谷;晚二叠世与中三叠世间盆地构造性质转换与前陆盆地;晚三叠世至侏罗纪的晚期前陆磨拉石沉积。在碎屑岩陆架沉积阶段,生成碎屑岩烃源岩层。在碳酸盐台地沉阶段,发育硝屑灰岩、藻灰岩、礁灰岩和暴露作用生成的白云岩储集岩。因而其早期被动大陆边缘阶段构了古生新储组合。前陆盆地早期在前渊盆地内沉积了一套碎屑岩烃源岩。它与早期的储集层构成了新生古储组合。同时也对下伏地层起到了封闭作用。沉积地层逐层向克拉通斜坡上超覆,发育地层圈闭。前渊阶段中期快速沉积的巨厚的复理石沉积和晚期快速沉积形成的磨拉石沉积有利于早期沉积的迅速埋藏、成熟和保存。  相似文献   
293.
鄂尔多斯盆地上古生界高分辨率层序地层分析   总被引:35,自引:1,他引:35  
按基准面旋回原理,将鄂尔多斯盆地上古生界本溪组(C2b)、太原组(P1t)、山西组(P1s)和下石盒子组(P1xs)划分为3个超长期、8个长期、19个中期和62个短期旋回层序:较为详细地介绍了各级别层序的结构类型、叠加样式和沉积演化序列;建立以长期旋回层序为年代地层框架,中期旋回层序为等时地层对比单元的层序的地层格架;并讨论高分辨率层序地层与天然气藏的关系。  相似文献   
294.
This paper presents a case study of the Yellow River Delta in China, to trace land use and land cover changes during the past 20 years, with an emphasis on land quality changes. Three sets of data are used in this case study: remote sensing data derived from satellite images; crop yield data from statistics; and soil data collected by the researchers in the field. Our study reveals that at the regional scale, LUCC has taken place in a positive direction: vegetation cover has been expanding and crop yields per hectare have been on rise. However, while the overall eco-environment has improved, the improvement is uneven across the Delta region. At local levels, some areas show signs of increased salinization and declining organic content. Both natural forces and human activities are responsible for the LUCC, but human activities play a more important role. While some impacts of human activities are positive, the damages are often long-lasting and irreversible. We also conclude that it is necessary to use both macro data (such as remote sensing data) and micro data (data collected in the field) to study land quality change. The former are efficient in examining land quality changes at the regional scale, the latter can serve to verify ground patterns revealed from macro data and help to identify local variations, so as to get a comprehensive understanding of LUCC and promote sustainable land use and land management. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
295.
Changes in Geomorphic characteristics in the lower reaches of the Gongola River channel following construction of Kiri dam have been investigated. The study focused on changes in the channel bankfull width and of riverbed width after the control of the river flow, variation in discharge characteristics between pre- and post- dam periods and the impact of discharge variation on post- dam river channel. Results of the analysis revealed that the main effect of the impoundment of the Gongola channel is a drastic decrease in flood peaks below the reservoir by 11.5% (from 1,420 m3/sec to 1,256 m3/sec). The low flows have on the other hand increased by 268% (from 5.7 m3/sec to 21 m3/sec). The resultant effect of decrease in the discharge was reduction in the channel bankfull and riverbed widths by 38.3% and 72.2% respectively. Also, the post- dam channel became less sinuous and braided in some of the reaches downstream. Discharges of high peaks were found during the period of maximum precipitation (June to September) whereas low discharges were recorded during the period of minimum or no precipitation (December to May). Some of the observed implications of the flow control on the geometric variables were reduction in the overall channel width, concave bank erosion and emergence of vegetation in some of the reaches.  相似文献   
296.
Danian marine sedimentation in the Paris Basin occurred between two major erosional phases. The earlier was responsible for the stripping of presumably deposited Maastrichtian sediments and of a variable thickness of Campanian chalk. The later occurred during the late Palaeocene and resulted in the erosion of almost all Danian deposits, which are now limited to small and scattered outcrops. One of these outcrops corresponds to reefal and peri‐reefal limestones of middle to late Danian age, exposed in the quarries of Vigny (NW of Paris). Danian deposits here show intricate relations with the surrounding Campanian chalk. Danian sedimentation was contemporaneous with faulting, which generated signifiant sea‐floor relief and resulted in contrasting depositional areas: topographic highs with coralgal reefs, and depressions where calcirudite channel fill accumulated. Normal faulting occurred along WNW–ESE master faults. The generation of submarine fault scarps gave rise to various types of gravity‐driven phenomena, including the sliding and slumping of large blocks of reefal limestone and the deposition of carbonate debris flows. Along with the redeposition of the Danian carbonates, flows of fluidized and reworked Campanian chalk resulted from the peculiar physical properties of the undercompacted chalks. Erosion and faulting occurred predominantly during the Palaeocene and represent a major episode in the physiographic evolution of the Paris Basin.  相似文献   
297.
Multichannel seismic reflection data acquired by Marine Arctic Geological Expedition (MAGE) of Murmansk, Russia in 1990 provide the first view of the geological structure of the Arctic region between 77–80°N and 115–133°E, where the Eurasia Basin of the Arctic Ocean adjoins the passive-transform continental margin of the Laptev Sea. South of 80°N, the oceanic basement of the Eurasia Basin and continental basement of the Laptev Sea outer margin are covered by 1.5 to 8 km of sediments. Two structural sequences are distinguished in the sedimentary cover within the Laptev Sea outer margin and at the continent/ocean crust transition: the lower rift sequence, including mostly Upper Cretaceous to Lower Paleocene deposits, and the upper post-rift sequence, consisting of Cenozoic sediments. In the adjoining Eurasia Basin of the Arctic Ocean, the Cenozoic post-rift sequence consists of a few sedimentary successions deposited by several submarine fans. Based on the multichannel seismic reflection data, the structural pattern was determined and an isopach map of the sedimentary cover and tectonic zoning map were constructed. A location of the continent/ocean crust transition is tentatively defined. A buried continuation of the mid-ocean Gakkel Ridge is also detected. This study suggests that south of 78.5°N there was the cessation in the tectonic activity of the Gakkel Ridge Rift from 33–30 until 3–1 Ma and there was no sea-floor spreading in the southernmost part of the Eurasia Basin during the last 30–33 m.y. South of 78.5°N all oceanic crust of the Eurasia Basin near the continental margin of the Laptev Sea was formed from 56 to 33–30 Ma.  相似文献   
298.
Heat flow and thermal modeling of the Yinggehai Basin, South China Sea   总被引:9,自引:0,他引:9  
Geothermal gradients are estimated to vary from 31 to 43 °C/km in the Yinggehai Basin based on 99 temperature data sets compiled from oil well data. Thirty-seven thermal conductivity measurements on core samples were made and the effects of porosity and water saturation were corrected. Thermal conductivities of mudstone and sandstone range from 1.2 to 2.7 W/m K, with a mean of 2.0±0.5 W/m K after approximate correction. Heat flow at six sites in the Yinggehai Basin range from 69 to 86 mW/m2, with a mean value of 79±7 mW/m2. Thick sediments and high sedimentation rates resulted in a considerable radiogenic contribution, but also depressed the heat flow. Measurements indicate the radiogenic heat production in the sediment is 1.28 μW/m3, which contributes 20% to the surface heat flow. After subtracting radiogenic heat contribution of the sediment, and sedimentation correction, the average basal heat flow from basement is about 86 mW/m2.Three stages of extension are recognized in the subsidence history, and a kinematic model is used to study the thermal evolution of the basin since the Cenozoic era. Model results show that the peak value of basal heat flow was getting higher and higher through the Cenozoic. The maximum basal heat flow increased from 65 mW/m2 in the first stage to 75 mW/m2 in the second stage, and then 90 mW/m2 in the third stage. The present temperature field of the lithosphere of the Yinggehai Basin, which is still transient, is the result of the multistage extension, but was primarily associated with the Pliocene extension.  相似文献   
299.
Questions persist concerning the earthquake potential of the populous and industrial Lake Ontario (Canada–USA) area. Pertinent to those questions is whether the major fault zone that extends along the St. Lawrence River valley, herein named the St. Lawrence fault zone, continues upstream along the St. Lawrence River valley at least as far as Lake Ontario or terminates near Cornwall (Ontario, Canada)–Massena (NY, USA). New geological studies uncovered paleotectonic bedrock faults that are parallel to, and lie within, the projection of that northeast-oriented fault zone between Cornwall and northeastern Lake Ontario, suggesting that the fault zone continues into Lake Ontario. The aforementioned bedrock faults range from meters to tens of kilometers in length and display kinematically incompatible displacements, implying that the fault zone was periodically reactivated in the study area. Beneath Lake Ontario the Hamilton–Presqu'ile fault lines up with the St. Lawrence fault zone and projects to the southwest where it coincides with the Dundas Valley (Ontario, Canada). The Dundas Valley extends landward from beneath the western end of the lake and is marked by a vertical stratigraphic displacement across its width. The alignment of the Hamilton–Presqu'ile fault with the St. Lawrence fault zone strongly suggests that the latter crosses the entire length of Lake Ontario and continues along the Dundas Valley.The Rochester Basin, an east–northeast-trending linear trough in the southeastern corner of Lake Ontario, lies along the southern part of the St. Lawrence fault zone. Submarine dives in May 1997 revealed inclined layers of glaciolacustrine clay along two different scarps within the basin. The inclined layers strike parallel to the long dimension of the basin, and dip about 20° to the north–northwest suggesting that they are the result of rigid-body rotation consequent upon post-glacial faulting. Those post-glacial faults are growth faults as demonstrated by the consistently greater thickness, unit-by-unit, of unconsolidated sediments on the downthrown (northwest) side of the faults relative to their counterparts on the upthrown (southeast) side. Underneath the western part of Lake Ontario is a monoclinal warp that displaces the glacial and post-glacial sediments, and the underlying bedrock–sediment interface. Because of the post-glacial growth faults and the monoclinal warp the St. Lawrence fault zone is inferred to be tectonically active beneath Lake Ontario. Furthermore, within the lake it crosses at least five major faults and fault zones and coexists with other neotectonic structures. Those attributes, combined with the large earthquakes associated with the St. Lawrence fault zone well to the northeast of Lake Ontario, suggest that the seismic risk in the area surrounding and including Lake Ontario is likely much greater than previously believed.  相似文献   
300.
We show that spurious large non-double-couple components can be obtained in inversions for the full deviatoric moment tensor for shallow crustal earthquakes due to inaccurate Earth models. The traditional “best double-couple” solution does not in general provide an optimal estimate of a double-couple mechanism, and is only reliable when the non-double-couple component of the full deviatoric solution is small. The inverse problem for the moment tensors of the 1998 Antarctic Plate and 2000 Wharton Basin strike-slip earthquakes is shown in each case to have two well-fitting minima in the misfit function of pure double-couple solutions. Such pairs of solutions are most likely to exist for earthquakes which are close either to vertical strike-slip or to dip-slip on a fault plane dipping at 45°. It is shown theoretically that these pairs of solutions arise from the combination of the pure double-couple constraint and the instability of two elements of the moment tensor. No significant non-double-couple component is found for the shallow thrusting 1996 Biak, Indonesia earthquake.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号