首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1808篇
  免费   226篇
  国内免费   828篇
测绘学   2篇
大气科学   11篇
地球物理   210篇
地质学   2382篇
海洋学   100篇
天文学   17篇
综合类   47篇
自然地理   93篇
  2024年   18篇
  2023年   57篇
  2022年   50篇
  2021年   92篇
  2020年   115篇
  2019年   124篇
  2018年   155篇
  2017年   139篇
  2016年   146篇
  2015年   118篇
  2014年   134篇
  2013年   136篇
  2012年   217篇
  2011年   99篇
  2010年   97篇
  2009年   109篇
  2008年   115篇
  2007年   118篇
  2006年   100篇
  2005年   90篇
  2004年   92篇
  2003年   86篇
  2002年   61篇
  2001年   56篇
  2000年   69篇
  1999年   42篇
  1998年   35篇
  1997年   54篇
  1996年   20篇
  1995年   26篇
  1994年   23篇
  1993年   21篇
  1992年   11篇
  1991年   9篇
  1990年   6篇
  1989年   8篇
  1988年   4篇
  1987年   4篇
  1985年   3篇
  1983年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有2862条查询结果,搜索用时 296 毫秒
991.
《International Geology Review》2012,54(13):1532-1547
The Jitoushan W–Mo ore body is a typical skarn-type deposit with the potential for porphyry Mo mineralization at depth. As it is newly discovered, only a few studies have been conducted on the geochronology and ore genesis of this deposit. The ore district consists of Cambrian to Silurian sedimentary and low-grade metasedimentary strata, intruded by granodiorite, diorite porphyry, granite porphyry, and quartz porphyry. Skarn W–Mo ore bodies are hosted in the contact zone between the granodiorite and Cambrian limestone strata. Within the granodiorite near the contact zone, quartz vein type and disseminated sulphide mineralization are well developed. The Mo-bearing granite porphyry has been traced at depth by drilling. Our results reveal two discrete magmatic events at ca. 138 and ca. 127 Ma in the study area. The molybdenite Re–Os isochronal age of 136.6 ± 1.5 million years is consistent with the first magmatic event. The zircon Hf isotope (?Hf(t) =??12.55?3.91), sulphide isotopes (δ34S = 3.32–5.59‰), and Re content of molybdenite (Recontent = 6.424–19.07 μg) indicate that the ore-forming materials were mainly derived from the deep crust. The regional tectonic system switched from a Late Jurassic transpressive regime to an earliest Cretaceous extensional regime at ca. 145 Ma, and at ca. 138 Ma, the Jitoushan W–Mo deposit formed in an extensional setting.  相似文献   
992.
《International Geology Review》2012,54(13):1548-1561
The location of the suture zone between the South China and Indochina blocks in northwest Vietnam has been under debate for decades. Generally, the boundary between these blocks has been placed along (1) the Ailaoshan–Red River zone or (2) the Song Ma zone. The Sin Quyen Formation, lying between these zones, was previously regarded as a Palaeo- and Mesoproterozoic sequence. It comprises its provenance and tectonic affinity. We analysed detrital zircons from two paragneisses and one migmatite of the Sin Quyen Formation employing laser ablation inductively coupled plasma mass spectrometry U–Pb dating techniques. U–Pb ages of these zircons show three main periods of zircon formation: ~2.7–3.0, ~2.2–2.5, and ~1.8 Ga, suggesting that Sin Quyen rocks were mainly derived from Palaeoproterozoic and Archaean basement units. Inasmuch as the South China basement comprises rocks of similar ages, we conclude that the Sin Quyen Formation belongs to that block. Our new data strengthen the view that the suture between the South China and Indochina blocks is located within the Song Ma zone. In addition, zircons with U–Pb ages >3.0 thousand million years represent the oldest minerals reported in northwest Vietnam so far, indicating the existence of Mesoarchaean crustal remnants in this region.  相似文献   
993.
《International Geology Review》2012,54(15):1829-1842
The Tarim block, one of the largest cratons in China, records an important part of the Proterozoic crustal evolution of the Earth. Many previous studies have focused on the Neoproterozoic magmatism and tectonic evolution of this block in relation to the break-up of Rodinia, although relatively little is known about its earlier tectono-magmatic history. In this article, we present detailed petrographic, geochronologic, whole-rock geochemical, and in situ zircon Hf isotope data for the pre-Neoproterozoic Xishankou granitoid pluton (XBP), one of several blue quartz-bearing granitoid intrusions well exposed in the Quruqtagh area, and discuss these intrusions in terms of their tectonic environment. Zircon LA-ICP-MS dating indicates that gneissic quartz diorite and granodiorite of the XBP crystallized at 1934 ± 13 and 1944 ± 19 Ma, respectively. Both underwent metamorphism essentially coeval with emplacement, a time that is compatible with the globally distributed 2.1–1.8 Ga crustal amalgamation during formation of the supercontinent Columbia. Petrographic and geochemical evidence suggest that the XBP is a continental-arc-type granite and may have been generated by the partial melting of Archaean thickened lower crust; this would suggest that the northern Tarim block was a continental-type arc at ca. 1940 Ma. Our new data, together with previous regional geological studies, indicate that a series of Palaeoproterozoic (ca. 2.0–1.8 Ga) tectono-magmatic events occurred in the northern Tarim attending the assembly of Columbia.  相似文献   
994.
995.
《International Geology Review》2012,54(16):1918-1943
The recent discovery of Early Ordovician S-type granites in the southwest of the Chiapas Massif Complex adds a new perspective to the Palaeozoic history of the Maya block, inasmuch as no rocks of such age had previously been reported in this region. New geologic mapping west of Motozintla, Chiapas, revealed pelitic to psammitic metasedimentary successions (Jocote Unit) intruded by granitoids and metabasites. The Jocote Unit is unconformably underlain by the newly defined Candelaria Unit, which comprises deformed calc-silicate rocks and interlayered folded amphibolites. The Candelaria Unit is the oldest rock succession so far recognized in the southern Maya block. We used laser-ablation multicollector inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb dating to determine the ages of the rock, yielding Early Ordovician (ca. 470 Ma) and Late Ordovician (ca. 450 Ma) ages.

Major and trace element geochemistry, as well as Nd and Sr isotope data, suggest that folded amphibolites of the Candelaria Unit are mantle-derived and are probably related to rifting. The Early Ordovician bimodal magmatism of the Jocote Unit is more strongly differentiated; it reflects crustal contamination and volcanic-arc chemical signatures. A granitic stock (Motozintla pluton) intruded the area in the Late Ordovician. Its geochemical composition indicates less crustal contamination and a mixed signature between volcanic-arc and within-plate settings. Magmatic rocks analogous in age and chemical character crop out in the Rabinal and the Altos Cuchumatanes areas of Guatemala, suggesting the existence of a semi-continuous Ordovician magmatic belt from Chiapas to central Guatemala. Similar but somewhat younger granites also occur in the Maya Mountains of Belize, suggesting that magmatism migrated in the Silurian from the Chiapas–Guatemala belt towards the Maya Mountains.  相似文献   
996.
During late Palaeozoic time, extensive magmatism and associated ore deposits were developed in the eastern Tianshan orogenic belt (ETOB), Northwest China, which is part of the Central Asian Orogenic Belt. To understand the petrogenesis of the intrusions in this area, we performed in situ zircon U–Pb and Hf isotopic analyses on the Tuwu–Yandong (TW–YD) stocks and the Xianshan, Hulu, Luodong, and Poshi batholiths. Two major suites of intrusive rocks have been recognized in the ETOB: (1) 338–339 Ma plagiogranite porphyries and 265–300 Ma ultramafic and mafic rocks, of which the former are associated with 323 Ma porphyry Cu–Mo deposits and have enriched radiogenic Hf isotopic compositions (?Hf(t) = +11.5 to +15.6), which were derived from a depleted mantle source, whereas the latter are associated with 265–300 Ma magmatic Ni–Cu deposits and have variable Hf isotopic compositions (?Hf(t) = ?10.3 to +14.3), indicating an origin via the hybridization of depleted mantle magma and variable amounts of ancient lower-crustal components. The proposed magma sources, combined with the geochemical differences between these two suites of intrusive rocks, indicate that in the lower to middle Carboniferous, a N-dipping subduction zone beneath the Dananhu arc triggered the emplacement of granitic porphyries in the Tousuquan and Dananhu island arc belt in the east Tianshan, leading to the formation of the TW and YD porphyry Cu–Mo deposits. In the Upper Carboniferous to Lower Permian, large mafic–ultramafic complexes were emplaced during the closure of the ancient Tianshan Ocean, resulting in the formation of several magmatic Cu–Ni sulphide deposits.  相似文献   
997.
《International Geology Review》2012,54(13):1688-1704
The Yinshan Block, part of the Neoarchaean basement of the Western Block of the North China Craton, is composed of granite–greenstone and granulite–charnockite complexes. We report research on a suite of charnockites from the granulite–charnockite complex and characterize their geochemistry, zircon U–Pb geochronology, and Hf isotopic composition. The charnockites can be divided into intermediate (SiO2 = 59–63 wt.%) and silicic (SiO2 = 69–71 wt.%) groups. U–Pb zircon data yield protolith formation ages of 2524 ± 4 Ma, 2533 ± 15 Ma, followed by metamorphism at 2498 ± 3 Ma, 2490 ± 11 Ma, respectively, for these groups. Although the intermediate charnockites are characterized by higher Al2O3, TiO2, Fe2O3T, MnO, MgO, CaO, P2O5, K2O, Sr, and ΣREE content than the silicic charnockites, the ages and Hf isotopic composition of zircons and REE patterns of both intermediate and silicic charnockites are remarkably consistent, which indicates that they are genetically related. These charnockites are predominantly metaluminous to slightly peraluminous, calc-alkalic to calcic, and magnesian – characteristics generally related to a subduction setting. High-Sr + Ba granites with low K2O/Na2O characteristics, shown by these charnockites, imply a mixture of mafic and felsic magmas generated from an enriched mantle + lower crust. High MgO, Ni, Cr and Mg#, low K2O/Na2O, and metaluminous to slightly peraluminous natures imply that the source rocks most likely were amphibolites. Coeval calc-alkaline magmatism and high-T granulite-facies metamorphism under low-H2O activity in the area lead us to propose a model involving mid-ocean ridge subduction within a Neoarchaean convergent margin. The arc-related rocks accreted along the continent margin, and became a barrier when the lithospheric mantle ascended through the slab window. Melt derived from the decompressing mantle mixed with melt derived from the overlying, juvenile lower crust melt, which was warmed and metamorphosed by the ascending lithospheric mantle.  相似文献   
998.
《International Geology Review》2012,54(15):1941-1958
The Qiarbahete complex in NW China consists of gabbroic diorite, granodiorite, and late-stage quartz diorite porphyry veins. Zircon sensitive high-resolution ion microprobe (SHRIMP) U–Pb analyses show that the gabbroic diorite and granodiorite formed at 368 ± 5.2 Ma and 354 ± 4.1 Ma, respectively, indicating that the complex was emplaced in the Late Devonian–Early Carboniferous. The gabbroic diorites, characteristic of Sanukitoids, exhibit high Mg# (62 average), MgO (6.84% average), Cr (195 ppm average), and Ni (61.4 ppm average) contents. The rocks show moderately fractionated rare earth element (REEs) patterns and weak negative Eu anomalies (δEu: 0.83–0.89), enrichment of large ion lithophile elements (LILEs), and depletion of high field strength elements (HFSEs), with low ?Nd(t) values (1.46–1.73). The gabbroic diorites originated from partial melting of a hydrous mantle wedge followed by assimilation of crust during ascent. The granodiorites show a geochemical affinity with adakitic rocks, e.g. SiO2 (64.95–67.87%) > 56%, Al2O3 (15.88–16.56%) > 15%, MgO (1.79–2.31%) < 3%, Sr (315–375 ppm) > 300 ppm, and Yb (1.84–2.06 ppm). They are enriched in light rare earth elements (LREEs) and LILEs and depleted in HFSEs, with weak negative Eu anomalies (δEu: 0.78–0.87). The granodiorites were mainly derived by the partial melting of a subducted oceanic slab, followed by subsequent melt–mantle interaction and crustal rocks contamination. All these indicate that the Qiarbahete complex was emplaced in a continental arc setting attending the southward subduction of the Junggar Ocean during the Late Devonian–early Carboniferous, generating the lateral accretion of continental crust in NW Tianshan.  相似文献   
999.
《International Geology Review》2012,54(14):1728-1743
Quartz-vein type gold mineralization at Xishimen is a recently discovered gold deposit in the central North China Craton. More than 50 auriferous quartz veins occur in this region within a NNW–SSE-trending fault zone 4600 m in length and 3–10 m wide. Wall rocks are mainly Precambrian tonalite–trondhjemite–granodiorite (TTG) gneisses and associated supracrustals, modified by K-feldspathization and pyrite-phyllic hydrothermal alteration. Based on detailed field and petrographic studies, we identify five episodes of mineralization: pyrite-phyllic stage (I), coarse-grained pyrite-milky white quartz stage (II), fine-grained smoky grey quartz-pyrite stage (III), fine-grained smoky grey quartz-polymetallic sulphide stage (IV), and quartz-carbonate stage (V). We present results of δ34S analysis of sulphide minerals from the different stages which show tightly clustered values in the range of –1.0‰ to 2.1‰, close to those of mantle and meteorite sulphur. Lead isotopic ratios of pyrite from the early to main stages also show restricted ranges with 206Pb/204Pb of 16.289–17.286, 207Pb/204Pb of 15.217–15.453, 208Pb/204Pb of 37.012–38.232, implying lower crustal input. 3He/4He and 40Ar/36Ar ratios of fluid trapped in pyrite are 0.68 Ra to 1.20 Ra (where Ra is the 3He/4He ratio of air = 1.4 × 10?6) and 540.9–1065, respectively. 3He and 4Ar concentrations vary from 10.05 to 18.5 (10?7 cm3STP/g) and 6.15 to 17.4 (10?7cm3STP/g), respectively, with calculated mantle helium ranging from 8.47% to 14.96% (average 11.01%). δ18OQ and δ18DQ values of quartz range from 8.0‰ to 13.2‰ and –101.9‰ to –70.5‰, respectively, with calculated δ18OW values of the mineralizing fluid ranging from 1.11‰ to 5.72‰, suggesting the mixing of magmatic aqueous fluid with meteoric water during gold precipitation. We correlate the mixed crust–mantle signature of the ore-forming sources to magmatism and metallogeny associated with Mesozoic inhomogeneous lithosphere thinning in the central North China Craton.  相似文献   
1000.
《International Geology Review》2012,54(16):2060-2082
The Kazda?? Massif was previously considered as the metamorphic basement of the Sakarya Zone, a microcontinental fragment in NW Anatolia. Our new field mapping, geochemical investigations, and radiometric dating lead to a re-evaluation of previous suggested models of the massif. The Kazda?? metamorphic succession is subdivided into two major units separated by a pronounced unconformity. The lower unit (the Tozlu metaophiolite) is a typical oceanic crust assemblage consisting of ultramafic rocks and cumulate gabbros. It is unconformably overlain by a thick platform sequence of the upper group (the Sar?k?z unit). The basement ophiolites and overlying platform strata were subjected to a single stage of high-temperature metamorphism under progressive compression during the Alpine orogeny, accompanied by migmatitic metagranite emplacement. Radiometric age data obtained from the Kazda?? metamorphic succession reveal a wide range of ages. Metagranites of the Kazda?? metamorphic succession define a U–Pb discordia upper intercept age of ca. 230 Ma and a lower intercept age of 24.8 ± 4.6 Ma. This younger age agrees with 207Pb/206Pb single-zircon evaporation ages of 28.2 ± 4.1 to 26 ± 5.6 Ma. Moreover, a lower intercept age of 28 ± 10 Ma from a leucocratic metagranite supports the Alpine ages of the massif within error limits. Reconnaissance detrital zircon ages constrain a wide range of possible transport and deposition ages of the metasediments in the Sar?k?z unit from ca. 120 to 420 Ma. Following high-temperature metamorphism and metagranite emplacement, the Kazda?? sequence was internally imbricated by Alpine compression, and the lowermost Tozlu ophiolite thrust southward onto the Sar?k?z unit. Field mapping, internal stratigraphy, and new radiometric age data show that the Sar?k?z unit is the metamorphic equivalent of the Mesozoic platform succession of the Sakarya Zone. The underlying metaophiolites are remnants of the Palaeo tethys Ocean, which closed during the early Alpine orogeny. After strong deformation attending nappe emplacement, the unmetamorphosed Miocene Evciler and Kavlaklar granites intruded the tectonic packages of the Kazda?? Massif. During Pleistocene time, the Kazda?? Massif was elevated by EW trending high-angle normal faults dipping to Edremit Gulf, and attained its present structural and topographic position. Tectonic imbrication, erosion and younger E–W-trending faulting were the main cause of the exhumation of the massif.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号