首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   360篇
  免费   14篇
  国内免费   61篇
大气科学   2篇
地球物理   171篇
地质学   17篇
海洋学   225篇
天文学   1篇
综合类   4篇
自然地理   15篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   4篇
  2020年   5篇
  2019年   12篇
  2018年   3篇
  2017年   6篇
  2016年   10篇
  2015年   8篇
  2014年   22篇
  2013年   8篇
  2012年   10篇
  2011年   38篇
  2010年   22篇
  2009年   25篇
  2008年   41篇
  2007年   26篇
  2006年   32篇
  2005年   25篇
  2004年   14篇
  2003年   18篇
  2002年   15篇
  2001年   12篇
  2000年   11篇
  1999年   11篇
  1998年   4篇
  1997年   4篇
  1996年   6篇
  1995年   5篇
  1994年   7篇
  1993年   7篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1988年   1篇
  1987年   5篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
排序方式: 共有435条查询结果,搜索用时 93 毫秒
81.
Phytoplankton size structure plays a significant role in controlling the carbon flux of marine pelagic ecosystems. The mesoscale distribution and seasonal variation of total and size-fractionated phytoplankton biomass in surface waters, as measured by chlorophyll a (Chl a), was studied in the Southern Yellow Sea using data from four cruises during 2006–2007. The distribution of Chl a showed a high degree of spatial and temporal variation in the study area. Chl a concentrations were relatively high in the summer and autumn, with a mean of 1.42 and 1.27 mg m−3, respectively. Conversely, in the winter and spring, the average Chl a levels were only 0.98 and 0.99 mg m−3. Total Chl a showed a clear decreasing gradient from coastal areas to the open sea in the summer, autumn and winter cruises. Patches of high Chl a were observed in the central part of the Southern Yellow Sea in the spring due to the onset of the phytoplankton bloom. The eutrophic coastal waters contributed at least 68% of the total phytoplankton biomass in the surface layer. Picophytoplankton showed a consistent and absolute dominance in the central region of the Southern Yellow Sea (>40%) in all of the cruises, while the proportion of microphytoplankton was the highest in coastal waters. The relative proportions of pico- and nanophytoplankton decreased with total biomass, whereas the proportion of the micro-fraction increased with total biomass. Relationships between phytoplankton biomass and environmental factors were also analysed. The results showed that the onset of the spring bloom was highly dependent on water column stability. Phytoplankton growth was limited by nutrient availability in the summer due to the strong thermocline. The combined effects of P-limitation and vertical mixing in the autumn restrained the further increase of phytoplankton biomass in the surface layer. The low phytoplankton biomass in winter was caused by vertical dispersion due to intense mixing. Compared with the availability of nutrients, temperature did not seem to cause direct effects on phytoplankton biomass and its size structure. Although interactions of many different environmental factors affected phytoplankton distributions, hydrodynamic conditions seemed to be the dominant factor. Phytoplankton size structure was determined mainly by the size-differential capacity in acquiring resource. Short time scale events, such as the spring bloom and the extension of Yangtze River plume, can have substantial influences, both on the total Chl a concentration and on the size structure of the phytoplankton.  相似文献   
82.
The ecohydrodynamics of the Gibraltar Strait and the Western Alboran Sea is investigated using a 3-D, two-way nested, coupled hydrodynamic/plankton ecosystem model, exploiting the MEDATLAS climatological database. A high-resolution model (~1 km) of the Gibraltar/Western Alboran region embedded within a coarse-resolution model of the West Mediterranean (~5 km) is implemented. The model seasonal climatology of the 3-D circulation and the flow characteristics at the Gibraltar Strait and the Alboran Sea are discussed, and their impact on the plankton ecosystem evolution is explored. An important ecohydrodynamic feature produced by the model is a permanent upwelling zone in the northwestern part of the Alboran Sea in agreement with observations. Model results show that both horizontal and vertical current intensity of the Atlantic Jet increases progressively at the strait to obtain maximum values in the northeastern Mediterranean entrance, inducing an upward displacement of the nitracline. The nutrient-rich water transport through the strait along with the generation of cyclonic vorticity in the northwestern Alboran Sea result in the accumulation of nutrients there and thus induce a permanent fertilisation of this area.  相似文献   
83.
The stable carbon isotopic composition of particulate organic matter in the ocean, δ13CPOC, shows characteristic spatial variations with high values in low latitudes and low values in high latitudes. The lowest δ13CPOC values (−32‰ to −35‰) have been reported in the Southern Ocean, whereas in arctic and subarctic regions δ13CPOC values do not drop below −27‰. This interhemispheric asymmetry is still unexplained. Global gradients in δ13CPOC are much greater than in δ13CDIC, suggesting that variations in isotopic fractionation during organic matter production are primarily responsible for the observed range in δ13CPOC. Understanding the factors that control isotope variability is a prerequisite when applying δ13CPOC to the study of marine carbon biogeochemistry. The present model study attempts to reproduce the δ13CPOC distribution pattern in the ocean. The three-dimensional (3D) Hamburg Model of the Oceanic Carbon Cycle version 3.1 (HAMOCC3.1) was combined with two different parametrizations of the biological fractionation of stable carbon isotopes. In the first parametrization, it is assumed that the isotopic fractionation between CO2 in seawater and the organic material produced by algae, P, is a function of the ambient CO2 concentration. The two parameters of this function are derived from observations and are not based on an assumption of any specific mechanism. Thus, this parametrization is purely empirical. The second parametrization is based on fractionation models for microalgae. It is supported by several laboratory experiments. Here the fractionation, P, depends on the CO2 concentration in seawater and on the (instantaneous) growth rates, μi, of the phytoplankton. In the Atlantic Ocean, where most field data are available, both parametrizations reproduce the latitudinal variability of the mean δ13CPOC distribution. The interhemispheric asymmetry of δ13CPOC can mostly be attributed to the interhemispheric asymmetry of CO2 concentration in the water. However, the strong seasonal variations of δ13CPOC as reported by several authors, can only be explained by a growth rate-dependent fractionation, which reflects variations in the cellular carbon demand.  相似文献   
84.
A survey was made of the Southwest Indian Ocean frontal region between 30 and 50°E containing the Agulhas Return, Subtropical and Subantarctic Fronts. From CTD, SeaSoar and extracted samples the distribution of nitrate, silicate and chlorophyll a is shown to be strongly linked to the front and water mass structure, varying zonally and meridionally. Surface chlorophyll a concentrations were low to the north and south leaving a band of elevated chlorophyll between the Subtropical and Subantarctic Fronts. The low concentration of chlorophyll a to the north, in Subtropical Water, was clearly due to nitrate limitation. Between the Subtropical and Subantarctic Fronts, where the chlorophyll a concentrations were highest, the surface layer showed silicate depletion limiting diatom growth. South of the Subantarctic Front there were deep extending, low concentrations of chlorophyll a, but despite plentiful supplies of macro-nutrients and a well-stratified surface layer, high concentrations of chlorophyll a were absent. Changes from west to east were associated with the meandering of the Southern Ocean Fronts, especially the Subtropical Front, and their strength and proximity to each other. Concentrations of chlorophyll a peaked where the Agulhas Return, Subtropical and Subantarctic Fronts were in close proximity. Combined frontal structures appear to have particularly pronounced vertical stability and are associated with enhanced upwelling of nutrients and leakage of nutrients across the front. Light levels are high within the shallow stable layer. Such conditions are clearly favourable for biological growth and support the development of larger-celled phytoplankton communities.  相似文献   
85.
浮游植物动力学模型及其在海域富营养化研究中的应用   总被引:10,自引:2,他引:10  
浮游植物动力学模型用来研究特定海域浮游植物生物量的时空分布规律,定量确定各种物理,生物过程的贡献,对解决浮游植物生物量异常增加导致的富营养化问题具有至关重要的作用,综述了国内外海洋浮游植物动力学模型研究的发展过程和现状,介绍了几种不同时空尺度浮游植物动力学模型的特点和性能,此类模型在发达国家的海域富营养化研究和环境管理中已取得了相当的进展,而我国目前虽已开展了海洋生态模型的初步研究,但面临一些困难,其中不仅需要获取特定海域的过程参数,而且急需对海域的强迫过程和边界过程加强认识。  相似文献   
86.
大连湾春秋季浮游植物的调查研究   总被引:1,自引:1,他引:1       下载免费PDF全文
张树林  赵晖 《海洋科学》2003,27(2):45-48
1999年5月和10月 ,对大连湾 (121°36′42″~121°46′53″N,38°28′39″~39°00′16″E)进行了浮游植物的调查研究 ,结果表明:大连湾浮游植物共53种。其中 ,硅藻门有26属42种 ,甲藻门有6属8种。浮游植物的平均数量为23.4×104 个/m3,其中 ,硅藻门的平均数量为23.7×104个/m3 ,占浮游植物总量的80.1% ,甲藻门的平均数量为25.9×104个/m3 ,占浮游植物总量的16.7 %。优势种中的丹麦细柱藻 (Leptocylindyusdanicus)、中肋骨条藻 (Skeletonemacostatum)、诺氏海链藻 (Thalassiosiranordenskioldii)均为赤潮生物 ,说明该区域有发生赤潮的危险。  相似文献   
87.
~lOWThere is a great progreSS tO apply inathernatics m~ in studying marine ~. Because of more Parameters than there that can be speified aCCOrding to the finite dsts, itS parameters had tO be ~hly evaluated in geneal. On the other side, the ~ ~ter fitting in a cendn area is USually unfit in another area for the complication Of ~ iodf.It was lucky that the pwhlerns, how to evalUate the Parameters as ~y as ~ie ina~ with the available dsta and how to judge to what a extent the ParameterS s…  相似文献   
88.
湛江港浮游植物与赤潮植物的初步研究   总被引:12,自引:1,他引:12  
于1987年8月在湛江港设13个点采样。鉴定表明,共有浮游植物37属94种和变种;优势种类有中肋骨条藻、日本星杆藻、佛氏海毛藻等。湛江港浮游植物密度较高,港内外平均达1.3×104cell/L和7.3×105cell/L。经单项营养指数和营养状态结合指数分析表明,除两个点无机氮浓度略超标外,所有站位均未达到富营养化水平。调查期间,共发现赤潮生物31种,其中主要有中肋骨条藻、日本星杯藻、佛氏海毛藻、尖刺菱形藻和夜光藻等,中肋骨条漠和日本星杆藻曾形成水华。  相似文献   
89.
大嵛山岛海域浮游植物的生态   总被引:5,自引:2,他引:5  
林金美 《台湾海峡》1995,14(1):57-61
本文鉴定了1990年5、8、11月和1991年2月采自福建大存山岛海域的48价浮游植物样品,记录浮游植物115种,其中蓝藻2种、硅藻90种、甲藻22种和金藻1种。其月平均细胞总量为89.54×104个/m3。年高峰出现于春季5月,达236.65×104个/m3,次高峰为夏季8月,达113.19×104个/m3,最低谷出现在冬季2月,仅有3.75×104个/m3。  相似文献   
90.
A set of phytoplankton pigment measurements collected on eight quarterly transects from France to New Caledonia is analyzed in order to identify the main assemblages of phytoplankton and to relate their occurrence to oceanic conditions. Pigment concentrations are first divided by the sum [monovinyl chlorophyll a plus divinyl chlorophyll a] to remove the effect of biomass, and second are normalized to give an equal weight to all pigments. The resulting 17 pigments × 799 observations matrix is then classified into 10 clusters using neural methodology. Eight out of these 10 clusters have a well marked regional or seasonal character, thus evidencing adapted responses of the phytoplankton communities. The main gradient opposes two clusters with high fucoxanthin and chlorophyll c1+2 in the North Atlantic in January, April and July, to three clusters in the South Pacific Subtropical Gyre with high divinyl chlorophyll a, zeaxanthin and phycoerythrin. One of the clusters in the South Pacific Subtropical Gyre has relatively high zeaxanthin and phycoerythrin contents and dominates in November and February (austral summer), while another with relatively high divinyl chlorophylls a and b dominates in May and August (austral winter). The third one in the South Pacific is characterized by high carotene concentration and its occurrence peaks in February and May. In the equatorial current system, one cluster, rich in chlorophylls b and c1+2, is strictly located in a narrow zone centred at the equator, while another with relatively high violaxanthin concentration is restricted to the high nutrient - low chlorophyll waters in only the southern part of the South Equatorial Current. One cluster with relatively high prasinoxanthin content has a spatial distribution spanning the entire South Equatorial Current. Two clusters have a ubiquitous distribution: one in the equatorial Pacific, the Carribbean Sea and the North Atlantic during summer has pigment concentrations close to the average of the entire dataset, and the other in the South Pacific Subtropical Gyre, the Carribbean Sea and the North Atlantic during autumn clearly has an oligotrophic character. Many of the differences between clusters are caused by diagnostic pigments of nano- or picoflagellates. While the space and time characteristics of the clusters are well marked and might correspond to differences in physical and chemical forcing, knowledge of the ecological requirements of these flagellates is generally lacking to explain how the variability of the environment triggers these clusters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号