首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  国内免费   1篇
测绘学   1篇
地球物理   5篇
地质学   2篇
海洋学   2篇
自然地理   2篇
  2017年   2篇
  2013年   1篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  1988年   1篇
排序方式: 共有12条查询结果,搜索用时 62 毫秒
11.
There is increasing interest in tidal wetlands as mechanisms for sustainable and long-term coastal defence. The complexities of the interaction between the deposition of suspended particulate matter (SPM) and submerged vegetation, however, is to a large extent poorly understood. Consequently, accurate parameterisation of cohesive sediment settling fluxes in these environments is a crucial requirement for the development of high-resolution numerical models of wetland morphodynamics. A novel laboratory experiment is described in which the turbulent flow structure within a canopy of the halophytic macrophyte Spartina anglica is examined, and floc characteristics quantified using a unique floc camera configuration able to measure directly the full spectral floc size (D) and settling velocity (Ws). We provide the first quantitative observations of floc characteristics from shallow (h<0.5 m), vegetated flows and investigate the potential influence that variations in vegetative density may have on flocculation, and thus depositional fluxes, in comparison to unvegetated flows.  相似文献   
12.
Dungeness Foreland is a large sand and gravel barrier located in the eastern English Channel that during the last 5000 years has demonstrated remarkable geomorphological resilience in accommodating changes in relative sea-level, storm magnitude and frequency, variations in sediment supply as well as significant changes in back-barrier sedimentation. In this paper we develop a new palaeogeographic model for this depositional complex using a large dataset of recently acquired litho-, bio- and chrono-stratigraphic data. Our analysis shows how, over the last 2000 years, three large tidal inlets have influenced the pattern of back-barrier inundation and sedimentation, and controlled the stability and evolution of the barrier by determining the location of cross-shore sediment and water exchange, thereby moderating sediment supply and its distribution. The sheer size of the foreland has contributed in part to its resilience, with an abundant supply of sediment always available for ready redistribution. A second reason for the landform's resilience is the repeated ability of the tidal inlets to narrow and then close, effectively healing successive breaches by back-barrier sedimentation and ebb- and/or flood-tidal delta development. Humans emerge as key agents of change, especially through the process of reclamation which from the Saxon period onwards has modified the back-barrier tidal prism and promoted repeated episodes of fine-grained sedimentation and channel/inlet infill and closure. Our palaeogeographic reconstructions show that large barriers such as Dungeness Foreland can survive repeated “catastrophic” breaches, especially where tidal inlets are able to assist the recovery process by raising the elevation of the back-barrier area by intertidal sedimentation. This research leads us to reflect on the concept of “coastal resilience” which, we conclude, means little without a clearly defined spatial and temporal framework. At a macro-scale, the structure as a whole entered a phase of recycling and rapid progradation in response to changing sediment budget and coastal dynamics about 2000 years ago. However, at smaller spatial and temporal scales, barrier inlet dynamics have been associated with the initiation, stabilisation and breakdown of individual beaches and complexes of beaches. We therefore envisage multiple scales of “resilience” operating simultaneously across the complex, responding to different forcing agents with particular magnitudes and frequencies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号