首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2264篇
  免费   495篇
  国内免费   449篇
测绘学   188篇
大气科学   397篇
地球物理   786篇
地质学   1032篇
海洋学   450篇
天文学   9篇
综合类   114篇
自然地理   232篇
  2024年   8篇
  2023年   33篇
  2022年   76篇
  2021年   90篇
  2020年   119篇
  2019年   121篇
  2018年   114篇
  2017年   112篇
  2016年   107篇
  2015年   131篇
  2014年   176篇
  2013年   171篇
  2012年   149篇
  2011年   154篇
  2010年   137篇
  2009年   149篇
  2008年   144篇
  2007年   138篇
  2006年   137篇
  2005年   120篇
  2004年   101篇
  2003年   97篇
  2002年   71篇
  2001年   69篇
  2000年   71篇
  1999年   47篇
  1998年   47篇
  1997年   55篇
  1996年   53篇
  1995年   39篇
  1994年   37篇
  1993年   31篇
  1992年   22篇
  1991年   18篇
  1990年   15篇
  1989年   13篇
  1988年   16篇
  1987年   6篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1980年   1篇
  1978年   3篇
  1954年   2篇
排序方式: 共有3208条查询结果,搜索用时 31 毫秒
91.
针对区域大气污染物排放量与空气质量在时空分布上存在不完全协同、匹配的现象,论文选择SO2、NOX、PM2.5、CO和VOCs作为大气污染物指标,选择气溶胶光学厚度(Aerosol Optical Depth, AOD)表征颗粒物环境空气质量,以武汉市为例,综合应用耦合模型和空间错位指数模型研究2类指标之间的空间非协同耦合规律。主要结论如下:① 武汉市大气污染物排放量与颗粒物空气质量具有不同空间分布特征,大气污染物排放量呈现由城市中心城区向远城区递减的趋势,其中SO2、PM2.5和VOCs的排放具有明显的中心聚集现象,而NOX和CO聚集现象不显著,且与道路分布明显相关;AOD分布具有明显的空间差异性,总体上呈由西北向东南依次递减的趋势。② 武汉市大气污染物排放与颗粒物空气质量的空间非协同耦合规律:越靠近城市中心城区,空间协同耦合现象越显著,空间错位现象越弱;越远离主城区,空间非协同耦合现象越显著,空间错位现象越显著;SO2排放量与AOD在武汉市远城区的空间错位指数均大于0.7,且耦合度指数小于0.3,呈现较强的非协同耦合特征,NOX、VOCs、PM2.5的排放量与AOD在武汉中心城区的空间错位指数均小于0.5,且耦合度指数大于0.5,协同耦合现象较为显著。③ 基于时空非协同耦合分析城市大气环境污染治理建议:针对污染物与AOD空间错位不显著的城市中心城区,以本地减排治理为主;针对污染物与AOD空间错位显著的远城区,应在污染溯源分析的基础上进行区域协调综合治理。  相似文献   
92.
A regional ocean circulation model with four-dimensional variational data assimilation scheme is configured to study the ocean state of the Indian Ocean region (65°E–95°E; 5°N–20°N) covering the Arabian Sea (AS) and Bay of Bengal (BoB). The state estimation setup uses 10 km horizontal resolution and 5 m vertical resolution in the upper ocean. The in-situ temperature and salinity, satellite-derived observations of sea surface height, and blended (in-situ and satellite-derived) observations of sea surface temperature alongwith their associated uncertainties are used for data assimilation with the regionally configured ocean model. The ocean state estimation is carried out for 61 days (1 June to 31 July 2013). The assimilated fields are closer to observations compared to other global state estimates. The mixed layer depth (MLD) of the region shows deepening during the period of assimilation with AS showing higher MLD compared to the BoB. An empirical forecast equation is derived for the prediction of MLD using the air–sea forcing variables as predictors. The surface and sub-surface (50 m) heat and salt budget tendencies of the region are also investigated. It is found that at the sub-surface, only the advection and diffusion temperature and salt tendencies are important.  相似文献   
93.
The effect of river runoff over the northern Indian Ocean(NIO) especially over the Bay of Bengal(Bo B) has been studied using global Nucleus for European Modelling of the Ocean(NEMO). Two sensitivity experiments, with and without river runoff are conducted and the influence of river runoff on the Indian Ocean hydrography,stratification and circulation features are studied. It is found that due to river runoff surface salinity over the northern Bo B decreases by more than 5 and the East India Coastal Current strengthens by 2 cm/s during post monsoon season. The fresh river water reaches up to 15°N in the Bo B and is the main cause for low salinity there.Sea surface temperature in the northwestern Bo B increases by more than 0.2℃ due to the river runoff in summer monsoon while surface cooling upto 0.2℃ is seen in north-west part of Bo B in winter season. The seasonal mixed layer depth in the region is found to be dependent on river runoff. The effect of vertical shear and Brunt Vaisala frequency on stratification is also examined. The ocean water becomes highly stratified up to 3 035 m due to the river runoff. It is found that the energy required for mixing is high in the northern and coastal Bo B.  相似文献   
94.
Submarine groundwater discharge (SGD) plays an important role in coastal biogeochemical processes and hydrological cycles, particularly off volcanic islands in oligotrophic oceans. However, the spatial and temporal variations of SGD are still poorly understood owing to difficulty in taking rapid SGD measurements over a large scale. In this study, we used four airborne thermal infrared surveys (twice each during high and low tides) to quantify the spatiotemporal variations of SGD over the entire coast of Jeju Island, Korea. On the basis of an analytical model, we found a linear positive correlation between the thermal anomaly and squares of the groundwater discharge velocity and a negative exponential correlation between the anomaly and water depth (including tide height and bathymetry). We then derived a new equation for quantitatively estimating the SGD flow rates from thermal anomalies acquired at two different tide heights. The proposed method was validated with the measured SGD flow rates using a current meter at Gongcheonpo Beach. We believe that the method can be effectively applied for rapid estimation of SGD over coastal areas, where fresh groundwater discharge is significant, using airborne thermal infrared surveys.  相似文献   
95.
The strong vertical gradient in soil and subsoil saturated hydraulic conductivity is characteristic feature of the hydrology of catchments. Despite the potential importance of these strong gradients, they have proven difficult to model using robust physically based schemes. This has hampered the testing of hypotheses about the implications of such vertical gradients for subsurface flow paths, residence times and transit time distribution. Here we present a general semi‐analytical solution for the simulation of 2D steady‐state saturated‐unsaturated flow in hillslopes with saturated hydraulic conductivity that declines exponentially with depth. The grid‐free solution satisfies mass balance exactly over the entire saturated and unsaturated zones. The new method provides continuous solutions for head, flow and velocity in both saturated and unsaturated zones without any interpolation process as is common in discrete numerical schemes. This solution efficiently generates flow pathlines and transit time distributions in hillslopes with the assumption of depth‐varying saturated hydraulic conductivity. The model outputs reveal the pronounced effect that changing the strength of the exponential decline in saturated hydraulic conductivity has on the flow pathlines, residence time and transit time distribution. This new steady‐state model may be useful to others for posing hypotheses about how different depth functions for hydraulic conductivity influence catchment hydrological response. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
96.
杨兵  侯一筠 《海洋与湖沼》2020,51(5):978-990
基于高分辨率CFSR(climate forecast system reanalysis)风场资料、气候态海洋混合层厚度资料和卫星高度计海面高度异常资料,本文估计了大气风场向全球海洋混合层的近惯性能通量和近惯性能量输入功率,并探究了混合层厚度、风场时间分辨率、经验衰减系数和中尺度涡旋涡度对近惯性能通量和能量输入功率的影响。浮标实测风场和流速表明,本文所用的风场和阻尼平板模型可用于估计风场向全球海洋的近惯性能通量。本文计算得到的大气向全球海洋输入近惯性能量的功率为0.56TW(1TW=10~(12)W),其中北半球贡献0.22TW,南半球贡献0.34TW。在时间上,风场的近惯性能通量呈现各个半球冬季最强、夏季最弱的特征,这和西风带风场的季节变化有关。在空间上,近惯性能通量的高值海域为南、北半球西风带海洋,尤其是南大洋。混合层厚度和风场空间不均匀性使得西风带近惯性能通量呈现纬向变化,即海盆西部强于海盆东部。风场时间分辨率对近惯性能通量的估计至关重要,低时间分辨率风场对近惯性能通量的低估达到13%—30%。阻尼平板模型中的经验衰减系数对近惯性能通量估计的影响不超过5%。中尺度涡旋涡度仅改变近惯性能通量的空间分布,而对全球近惯性能量输入功率的影响可以忽略。  相似文献   
97.
中国科学院海洋研究所在开展西太平洋马里亚纳海山区多学科综合科学考察的过程中,利用“科学”轮船载的全水深多波束测深系统Seabeam3012对多个海山进行了地形测量工作。针对作业过程中遇到的恶劣海况导致采集数据质量差、多波束系统易检测错误海底信息、测线布设难度大等问题,提出了基于船体姿态对数据质量影响分析的多波束测线方向优化、基于地形变化并参考浅地层剖面资料的作业参数优化和基于实时采集情况的多波束采集测线布设优化等一系列措施,有效地提高了海山区多波束数据采集质量,并提高了作业效率。获得的高品质地形数据,为多学科协同研究奠定了基础,为ROV等设备的现场作业提供了安全保障。  相似文献   
98.
In this paper, effort is made to demonstrate the quality of high-resolution regional ocean circulation model in realistically simulating the circulation and variability properties of the northern Indian Ocean(10°S–25°N,45°–100°E) covering the Arabian Sea(AS) and Bay of Bengal(BoB). The model run using the open boundary conditions is carried out at 10 km horizontal resolution and highest vertical resolution of 2 m in the upper ocean.The surface and sub-surface structure of hydrographic variables(temperature and salinity) and currents is compared against the observations during 1998–2014(17 years). In particular, the seasonal variability of the sea surface temperature, sea surface salinity, and surface currents over the model domain is studied. The highresolution model's ability in correct estimation of the spatio-temporal mixed layer depth(MLD) variability of the AS and BoB is also shown. The lowest MLD values are observed during spring(March-April-May) and highest during winter(December-January-February) seasons. The maximum MLD in the AS(BoB) during December to February reaches 150 m (67 m). On the other hand, the minimum MLD in these regions during March-April-May becomes as low as 11–12 m. The influence of wind stress, net heat flux and freshwater flux on the seasonal variability of the MLD is discussed. The physical processes controlling the seasonal cycle of sea surface temperature are investigated by carrying out mixed layer heat budget analysis. It is found that air-sea fluxes play a dominant role in the seasonal evolution of sea surface temperature of the northern Indian Ocean and the contribution of horizontal advection, vertical entrainment and diffusion processes is small. The upper ocean zonal and meridional volume transport across different sections in the AS and BoB is also computed. The seasonal variability of the transports is studied in the context of monsoonal currents.  相似文献   
99.
Snowpack dynamics through October 2014–June 2017 were described for a forested, sub‐alpine field site in southeastern Wyoming. Point measurements of wetness and density were combined with numerical modeling and continuous time series of snow depth, snow temperature, and snowpack outflow to identify 5 major classes of distinct snowpack conditions. Class (i) is characterized by no snowpack outflow and variable average snowpack temperature and density. Class (ii) is characterized by short durations of liquid water in the upper snowpack, snowpack outflow values of 0.0008–0.005 cm hr?1, an increase in snowpack temperature, and average snow density between 0.25–0.35 g cm?3. Class (iii) is characterized by a partially saturated wetness profile, snowpack outflow values of 0.005–0.25 cm hr?1, snowpack temperature near 0 °C, and average snow density between 0.25–0.40 g cm?3. Class (iv) is characterized by strong diurnal snowpack outflow pattern with values as high as 0.75 cm hr?1, stable snowpack temperature near 0 °C, and stable average snow density between 0.35–0.45 g cm?3. Class (v) occurs intermittently between Classes (ii)–(iv) and displays low snowpack outflow values between 0.0008–0.04 cm hr?1, a slight decrease in temperature relative to the preceding class, and similar densities to the preceding class. Numerical modeling of snowpack properties with SNOWPACK using both the Storage Threshold scheme and Richards' equation was used to quantify the effect of snowpack capillarity on predictions of snowpack outflow and other snowpack properties. Results indicate that both simulations are able to predict snow depth, snow temperature, and snow density reasonably well with little difference between the 2 water transport schemes. Richards' equation more accurately simulates the timing of snowpack outflow over the Storage Threshold scheme, especially early in the melt season and at diurnal timescales.  相似文献   
100.
The soil conservation service (now Natural Resources Conservation Service) Curve Number (SCS-CN), one of the most commonly used methods for surface runoff prediction. The runoff calculated by this method was very sensitive to CN values. In this study, CN values were calculated by both arithmetic mean (CN_C) and least square fit method (CN_F) using observed rainfall-runoff data from 43 sites in the Loess Plateau region, which are considerably different from the CN2 values obtained from the USDA-SCS handbook table (CN_T). The results showed that using CN_C instead of CN_T for each watershed produce little improvement, while replacing CN_T with CN_F improves the performance of the original SCS-CN method, but still performs poorly in most study sites. This is mainly due to the SCS-CN method using a constant CN value and discounting of the temporal variation in rainfall-runoff process. Therefore, three factors—soil moisture, rainfall depth and intensity—affecting the surface runoff variability are considered to reflect the variation of CN in each watershed, and a new CN value was developed. The reliability of the proposed method was tested with data from 38 watersheds, and then applied to the remaining five typical watersheds using the optimized parameters. The results indicated that the proposed method, which boosted the model efficiencies to 81.83% and 74.23% during calibration and validation cases, respectively, performed better than the original SCS-CN and the Shi and Wang (2020b) method, a modified SCS-CN method based on tabulated CN value. Thus, the proposed method incorporating the influence of the temporal variability of soil moisture, rainfall depth, and intensity factors suggests an accurate runoff prediction for general applications under different hydrological and climatic conditions on the Loess Plateau region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号