首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   334篇
  免费   1篇
  国内免费   1篇
地球物理   4篇
地质学   3篇
天文学   328篇
自然地理   1篇
  2019年   1篇
  2013年   2篇
  2011年   31篇
  2010年   50篇
  2009年   45篇
  2008年   54篇
  2007年   26篇
  2006年   38篇
  2005年   31篇
  2004年   14篇
  2003年   23篇
  2002年   14篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
排序方式: 共有336条查询结果,搜索用时 334 毫秒
61.
62.
M.A. Janssen  A. Le Gall 《Icarus》2011,212(1):321-328
Since Cassini arrived at Saturn in 2004, its moon Titan has been thoroughly mapped by the RADAR instrument at 2-cm wavelength, in both active and passive modes. Some regions on Titan, including Xanadu and various bright hummocky bright terrains, contain surfaces that are among the most radar-bright encountered in the Solar System. This high brightness has been generally attributed to volume scattering processes in the inhomogeneous, low-loss medium expected for a cold, icy satellite surface. We can test this assumption now that the emissivity has been obtained from the concurrent radiometric measurements for nearly all the surface, with unprecedented accuracy (Janssen et al., and the Cassini RADAR Team [2009]. Icarus 200, 222-239). Kirchhoff’s law of thermal radiation relates the radar and radiometric properties in a way that has never been fully exploited. In this paper we examine here how this law may be applied in this case to better understand the nature of Titan’s radar-bright regions. We develop a quantitative model that, when compared to the observational data, allows us to conclude that either the reflective characteristics of the putative volume scattering subsurface must be highly constrained, or, more likely, organized structure on or in the surface is present that enhances the backscatter.  相似文献   
63.
G.J. Black  D.B. Campbell 《Icarus》2011,212(1):300-320
We have observed Titan with the Arecibo Observatory’s 12.6 cm wavelength radar system during the last eight oppositions of the Saturn system with sufficient sensitivity to characterize its scattering properties as a function of sub-Earth longitude. In a few sessions the Green Bank Telescope was used as the receiving instrument in a bistatic configuration to boost sub-radar track length and integration time. Radar echo spectra have been obtained for a total of 92 viewing geometries with sub-Earth locations scattered through all longitudes and at latitudes between 7.6°S and 26.3°S, close to the maximum southern excursion of the sub-Earth track. We find Titan to have globally average radar albedos at this wavelength of 0.161 in the opposite circular polarization sense as that transmitted (OC) and 0.074 in the same sense (SC), giving a polarization ratio SC/OC of 0.46. These values are intermediate between lower reflectivity rocky surfaces and higher reflectivity clean icy surfaces. The variations with longitude in general mirror the surface brightness variations seen through the infrared atmospheric windows. Xanadu Regio’s radar reflectivity and polarization ratio are higher than the global averages, and suggest that its composition is relatively cleaner water ice or, possibly, some other material with low propagation loss at radio wavelengths. For all echo spectra most of the power is in a broad diffuse component but with a specular component whose strength and narrowness is highly variable as a function of surface location. For all data we fit a sum of the standard Hagfors scattering law describing the specular component and an empirical diffuse radar scattering model to extract bulk parameters of the surface. Many areas exhibit very narrow specular reflections implying terrain that are quite flat on centimeter to meter scales over spans of tens to perhaps hundreds of kilometers. The proportion of spectra showing these narrow specular echoes has fallen significantly over the observational time span, indicating either a latitudinal effect related to terrain differences or changing surface conditions over the past several years. A few radar tracks, especially those from the 2008 session, overlap some high resolution Cassini RADAR imagery swaths to allow a direct comparison with terrain.  相似文献   
64.
During the final three of the five consecutive and similar Cassini Titan flybys T55-T59 we observe a region characterized by high plasma densities (electron densities of 1-8 cm−3) in the tail/nightside of Titan. This region is observed progressively farther downtail from pass to pass and is interpreted as a plume of ionospheric plasma escaping Titan, which appears steady in both location and time. The ions in this plasma plume are moving in the direction away from Titan and are a mixture of both light and heavy ions with composition revealing that their origin are in Titan's ionosphere, while the electrons are more isotropically distributed. Magnetic field measurements indicate the presence of a current sheet at the inner edge of this region. We discuss the mechanisms behind this outflow, and suggest that it could be caused by ambipolar diffusion, magnetic moment pumping or dispersive Alfvén waves.  相似文献   
65.
We present absorption cross sections of propane (C3H8) at temperatures from 145 K to 297 K in the 690–1550 cm−1 region. Pure and N2-broadened spectra were measured at pressures from 3 Torr to 742 Torr using a Bruker IFS125 FT-IR spectrometer at JPL. The gas absorption cell, developed at Connecticut College, was cooled by a closed-cycle helium refrigerator. The cross sections were measured and compiled for individual spectra recorded at various experimental conditions covering the planetary atmosphere and Titan. In addition to the cross sections, a propane pseudoline list with a frequency grid of 0.005 cm−1, was fitted to the 34 laboratory spectra. Line intensities and lower state energies were retrieved for each line, assuming a constant width. Validation tests showed that the pseudoline list reproduces discrete absorption features and continuum, the latter contributed by numerous weak and hot band features, in most of the observed spectra within 3%. Based on the pseudoline list, the total intensity in the 690–1550 cm−1 region was determined to be 52.93 (±3%) × 10−19 cm−1/(molecule cm−2) at 296 K; this value is within 3% of the average from four earlier studies. Finally, the merit of the pseudoline approach is addressed for heavy polyatomic molecules in support of spectroscopic observation of atmospheres of Titan and other planets. The cold cross sections will be submitted to the HITRAN database (hitran.harvard.edu), and the list of C3H8 pseudolines will be available from a MK-IV website of JPL (http://mark4sun.jpl.nasa.gov/data/spec/Pseudo).  相似文献   
66.
To explain the observed abundances of CO2 in Titan's atmosphere, a relatively high water deposition into the atmosphere needs to be invoked due to the importance of H2O photolysis in CO2 production. A likely source of H2O is icy dust particles from space. This paper considers the direct dust input to Titan's atmosphere from the interplanetary environment, and also ejecta particles from micrometeoroid impacts with the icy satellites Hyperion, Iapetus and Phoebe. It is found that the likely mass influx to Titan is 10–16 to 10–15 kg m–2 s–1. This mass influx is an order of magnitude too low to explain the observed levels of CO2 in Titan's atmosphere in the context of a recent photochemical model. This leads one to speculate as to the likelihood of one large impact to Titan in the recent past;i.e., that the atmosphere is not in equilibrium but is cnrrently losing CO2.  相似文献   
67.
We describe for the first time the generation and measurement of capillary waves in a water surface in a wind tunnel running with air at pressures of 15-1000 mbar. These experiments suggest a stronger dependence of wave generation on atmospheric density than the simple proportionality that might be expected from energy transfer arguments. Additionally, airflow over a nonaqueous fluid (kerosene) was found to produce waves of higher amplitude than for water under the same conditions. These preliminary results may indicate different efficiencies of wave generation on other planets, for which empirical terrestrial relations therefore do not apply, and thus may have a bearing on the lack of strong shoreline features on Mars and the possibility of specular glints from hydrocarbon lakes on Titan.  相似文献   
68.
R.K. Khanna 《Icarus》2005,178(1):165-170
Infrared spectra of crystalline HC3N and C2H2 were investigated at several temperatures between 15 and 150 K. The characteristics of the 505 and 753 cm−1 bands of HC3N are in complete agreement with the emission spectral data on Titan obtained by the Voyager IRIS instrument, thus confirming the identification of crystalline HC3N on Titan. A composite spectrum in the 720-800 cm−1 region, with contributions from HC3N and C2H2 in crystalline phases, reproduces the Voyager emission data in that region, thus providing a suggestion for the identification of crystalline C2H2 on Titan.  相似文献   
69.
R.K. Khanna 《Icarus》2005,177(1):116-121
We report the results of infrared studies of crystalline C2H5CN at several temperatures between 15 and 160 K. A case is made for the identification of crystalline C2H5CN in the stratosphere from the Voyager IRIS spectrum of Titan.  相似文献   
70.
The spatial distribution of N+ in Saturn's magnetosphere obtained from Cassini Plasma Spectrometer (CAPS) data can be used to determine the spatial distribution and relative importance of the nitrogen sources for Saturn's magnetosphere. We first summarize CAPS data from 15 orbits showing the spatial and energy distribution of the nitrogen component of the plasma. This analysis re-enforces our earlier discovery [Smith, H.T., Shappirio, M., Sittler, E.C., Reisenfeld, D., Johnson, R.E., Baragiola, R.A., Crary, F.J., McComas, D.J., Young, D.T., 2005. Geophys. Res. Lett. 32 (14). L14S03] that Enceladus is likely the dominant nitrogen source for Saturn's inner magnetosphere. We also find a sharp enhancement in the nitrogen ion to water ion ratio near the orbit of Enceladus which, we show, is consistent with the presence of a narrow Enceladus torus as described in [Johnson, R.E., Liu, M., Sittler Jr., E.C., 2005. Geophys. Res. Lett. 32. L24201]. The CAPS data and the model described below indicate that N+ ions are a significant fraction of the plasma in this narrow torus. We then simulated the combined Enceladus and Titan nitrogen sources using the CAPS data as a constraint. This simulation is an extension of the model we employed earlier to describe the neutral tori produced by the loss of nitrogen from Titan [Smith, H.T., Johnson, R.E., Shematovich, V.I., 2004. Geophys. Res. Lett. 31 (16). L16804]. We show that Enceladus is the principal nitrogen source in the inner magnetosphere but Titan might account for a fraction of the observed nitrogen ions at the largest distances discussed. We also show that the CAPS data is consistent with Enceladus being a molecular nitrogen source with a nitrogen to water ratio roughly consistent with INMS [Waite, J.H., and 13 colleagues, 2006. Science 311 (5766), 1419-1422], but out-gassing of other nitrogen-containing species, such as ammonia, cannot be ruled out.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号