首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17888篇
  免费   3416篇
  国内免费   3930篇
测绘学   717篇
大气科学   2093篇
地球物理   4681篇
地质学   10277篇
海洋学   2919篇
天文学   689篇
综合类   1148篇
自然地理   2710篇
  2024年   86篇
  2023年   222篇
  2022年   470篇
  2021年   722篇
  2020年   733篇
  2019年   777篇
  2018年   680篇
  2017年   746篇
  2016年   748篇
  2015年   860篇
  2014年   1070篇
  2013年   1336篇
  2012年   1034篇
  2011年   1169篇
  2010年   1061篇
  2009年   1160篇
  2008年   1178篇
  2007年   1225篇
  2006年   1289篇
  2005年   1106篇
  2004年   999篇
  2003年   892篇
  2002年   800篇
  2001年   709篇
  2000年   634篇
  1999年   568篇
  1998年   523篇
  1997年   430篇
  1996年   361篇
  1995年   342篇
  1994年   299篇
  1993年   237篇
  1992年   165篇
  1991年   132篇
  1990年   94篇
  1989年   99篇
  1988年   62篇
  1987年   47篇
  1986年   38篇
  1985年   36篇
  1984年   23篇
  1983年   15篇
  1982年   15篇
  1981年   12篇
  1980年   8篇
  1979年   3篇
  1978年   9篇
  1977年   5篇
  1973年   1篇
  1971年   3篇
排序方式: 共有10000条查询结果,搜索用时 792 毫秒
961.
针对水体信息提取时,传统算法不能较好地解决山体阴影被误提为水体的问题,引入多用于高光谱数据处理的光谱角匹配算法,以Land-sat8 OLI(band1-band7)为数据源,以黄河小浪底水库周边区域为实验区,开展水体信息提取研究,结果显示:水体指数法和波段关系提取的结果中有大量的山体阴影信息,提取精度不超过30%,而光谱角匹配法提取结果受阴影的影响较小,提取精度在99%以上。  相似文献   
962.
利用Landsat数据,结合NDWI与MNDWI提取水体信息的特点提出了一种新的水体指数NMWI,并结合OSTU算法自适应地确定最佳分割阈值,完成了对海洋、河流、湖泊和水库4种主要的典型水体信息的自动提取,均取得了较好的效果。  相似文献   
963.
Three‐dimensional seismic data were used to infer how bottom currents control unidirectional channel migration. Bottom currents flowing towards the steep bank would deflect the upper part of sediment gravity flows at an orientation of 1° to 11° to the steep bank, yielding a helical flow circulation consisting of a faster near‐surface flow towards the steep bank and a slower basal return flow towards the gentle bank. This helical flow model is evidenced by the occurrence of bigger, muddier (suggested by low‐amplitude seismic reflections) lateral accretion deposits and gentle channel wall with downlap terminations on the gentle bank and by smaller, sandier (indicated by high‐amplitude seismic reflectors) channel fills and steep channel walls with truncation terminations on the steep bank. This helical flow circulation promotes asymmetrical depositional patterns with dipping accretion sets restricted to the gentle bank, which restricts the development of sinuosity and yields unidirectional channel migration. These results aid in obtaining a complete picture of flow processes and sedimentation in submarine channels.  相似文献   
964.
The microstructures of turbiditic and hemipelagic muds and mudstones were investigated using a scanning electron microscope to determine whether there are microstructural features that can differentiate turbiditic from hemipelagic sedimentary processes. Both types of muddy deposits are, in general, characterized by randomly‐oriented clay particles. However, turbiditic muds and mudstones also characteristically contain aggregates of ‘edge‐to‐face’ contacts between clay particles with long‐axis lengths of up to 30 μm. Based on observations of the clay fabric of the experimentally‐formed muds settled from previously agitated muddy fluids, these types of aggregates, hereafter referred to as ‘aggregates of clay particles’, are interpreted as having been formed by the collision of component flocs in turbulent fluids. Furthermore, some aggregates of clay particles have ‘face‐to‐face’ contacts between clay particles; this is similar to face‐to‐face aggregates characteristically developed in fluid‐mud deposits that are commonly recognized only in turbiditic mudstones, indicating the possibility of a final stage of deposition under highly‐dense conditions, such as temporary fluid muds. In conjunction with earlier proposed lithofacies‐based and ichnofacies‐based criteria, aggregates of clay particles should be useful for the differentiation of turbiditic and hemipelagic muddy deposits, particularly with limited volumes of non‐oriented samples from deep‐water successions.  相似文献   
965.
This paper aims at developing a method for modeling rock mass with preexisting multiple discontinuities within the framework of the smoothed finite element method (SFEM). The discontinuity is simulated by an interface element with zero thickness, the stiffness matrix of which are derived explicitly based on the SFEM. An elastic damage constitutive relation with residual strength is introduced in order to describe the nonlinear mechanical behavior of the discontinuities. The computation codes of the present method were developed. The present method has been verified to be a sound approach for modeling discontinuous rock mass, inheriting the advantages of the SFEM.  相似文献   
966.
Based on 25-year(1987–2011) tropical cyclone(TC) best track data, a statistical study was carried out to investigate the basic features of upper-tropospheric TC–environment interactions over the western North Pacific. Interaction was defined as the absolute value of eddy momentum flux convergence(EFC) exceeding 10 m s~(-1)d~(-1). Based on this definition, it was found that 18% of all six-hourly TC samples experienced interaction. Extreme interaction cases showed that EFC can reach~120 m s~(-1)d~(-1) during the extratropical-cyclone(EC) stage, an order of magnitude larger than reported in previous studies.Composite analysis showed that positive interactions are characterized by a double-jet flow pattern, rather than the traditional trough pattern, because it is the jets that bring in large EFC from the upper-level environment to the TC center. The role of the outflow jet is also enhanced by relatively low inertial stability, as compared to the inflow jet. Among several environmental factors, it was found that extremely large EFC is usually accompanied by high inertial stability, low SST and strong vertical wind shear(VWS). Thus, the positive effect of EFC is cancelled by their negative effects. Only those samples during the EC stage, whose intensities were less dependent on VWS and the underlying SST, could survive in extremely large EFC environments, or even re-intensify. For classical TCs(not in the EC stage), it was found that environments with a moderate EFC value generally below ~25 m s~(-1)d~(-1) are more favorable for a TC's intensification than those with extremely large EFC.  相似文献   
967.
Roots are responsible for the uptake of water and nutrients by plants and have the plasticity to dynamically respond to different environmental conditions. However, most land surface models currently prescribe rooting profiles as a function only of vegetation type, with no consideration of the surroundings. In this study, a dynamic rooting scheme, which describes root growth as a compromise between water and nitrogen availability, was incorporated into CLM4.5 with carbon–nitrogen(CN) interactions(CLM4.5-CN) to investigate the effects of a dynamic root distribution on eco-hydrological modeling. Two paired numerical simulations were conducted for the Tapajos National Forest km83(BRSa3) site and the Amazon, one using CLM4.5-CN without the dynamic rooting scheme and the other including the proposed scheme. Simulations for the BRSa3 site showed that inclusion of the dynamic rooting scheme increased the amplitudes and peak values of diurnal gross primary production(GPP) and latent heat flux(LE) for the dry season, and improved the carbon(C) and water cycle modeling by reducing the RMSE of GPP by 0.4 g C m~(-2)d~(-1), net ecosystem exchange by 1.96 g C m~(-2)d~(-1), LE by 5.0 W m~(-2), and soil moisture by 0.03 m~3m~(-3), at the seasonal scale, compared with eddy flux measurements, while having little impact during the wet season. For the Amazon, regional analysis also revealed that vegetation responses(including GPP and LE) to seasonal drought and the severe drought of 2005 were better captured with the dynamic rooting scheme incorporated.  相似文献   
968.
Trends in precipitation are critical to water resources. Considerable uncertainty remains concerning the trends of regional precipitation in response to global warming and their controlling mechanisms. Here, we use an interannual difference method to derive trends of regional precipitation from GPCP(Global Precipitation Climatology Project) data and MERRA(ModernEra Retrospective Analysis for Research and Applications) reanalysis in the near-global domain of 60?S–60?N during a major global warming period of 1979–2013. We find that trends of regional annual precipitation are primarily driven by changes in the top 30% heavy precipitation events, which in turn are controlled by changes in precipitable water in response to global warming, i.e., by thermodynamic processes. Significant drying trends are found in most parts of the U.S. and eastern Canada,the Middle East, and eastern South America, while significant increases in precipitation occur in northern Australia, southern Africa, western India and western China. In addition, as the climate warms there are extensive enhancements and expansions of the three major tropical precipitation centers–the Maritime Continent, Central America, and tropical Africa–leading to the observed widening of Hadley cells and a significant strengthening of the global hydrological cycle.  相似文献   
969.
Responsible water management in an era of globalised supply chains needs to consider both local and regional water balances and international trade. In this paper, we assess the water footprints of total final demand in the EU-27 at a very detailed product level and spatial scale—an important step towards informed water policy. We apply the multi-regional input-output (MRIO) model EXIOBASE, including water data, to track the distribution of water use along product supply chains within and across countries. This enables the first spatially-explicit MRIO analysis of water embodied in Europe’s external trade for almost 11,000 watersheds world-wide, tracing indirect (“virtual”) water consumption in one country back to those watersheds where the water was actually extracted. We show that the EU-27 indirectly imports large quantities of blue and green water via international trade of products, most notably processed crop products, and these imports far exceed the water used from domestic sources. The Indus, Danube and Mississippi watersheds are the largest individual contributors to the EU-27’s final water consumption, which causes large environmental impacts due to water scarcity in both the Indus and Mississippi watersheds. We conclude by sketching out policy options to ensure that sustainable water management within and outside European borders is not compromised by European consumption.  相似文献   
970.
Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved understanding of how climate change may impact the availability and temperature of water resources is therefore of major importance. Here we use a multi-model ensemble to show the potential impacts of climate change on global hydropower and cooling water discharge potential. For the first time, combined projections of streamflow and water temperature were produced with three global hydrological models (GHMs) to account for uncertainties in the structure and parametrization of these GHMs in both water availability and water temperature. The GHMs were forced with bias-corrected output of five general circulation models (GCMs) for both the lowest and highest representative concentration pathways (RCP2.6 and RCP8.5). The ensemble projections of streamflow and water temperature were then used to quantify impacts on gross hydropower potential and cooling water discharge capacity of rivers worldwide. We show that global gross hydropower potential is expected to increase between +2.4% (GCM-GHM ensemble mean for RCP 2.6) and +6.3% (RCP 8.5) for the 2080s compared to 1971–2000. The strongest increases in hydropower potential are expected for Central Africa, India, central Asia and the northern high-latitudes, with 18–33% of the world population living in these areas by the 2080s. Global mean cooling water discharge capacity is projected to decrease by 4.5-15% (2080s). The largest reductions are found for the United States, Europe, eastern Asia, and southern parts of South America, Africa and Australia, where strong water temperature increases are projected combined with reductions in mean annual streamflow. These regions are expected to affect 11–14% (for RCP2.6 and the shared socio-economic pathway (SSP)1, SSP2, SSP4) and 41–51% (RCP8.5–SSP3, SSP5) of the world population by the 2080s.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号