首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   3篇
  国内免费   4篇
地球物理   9篇
地质学   9篇
海洋学   1篇
天文学   146篇
综合类   2篇
自然地理   2篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2011年   30篇
  2010年   17篇
  2009年   11篇
  2008年   30篇
  2007年   10篇
  2006年   10篇
  2005年   9篇
  2004年   8篇
  2003年   8篇
  2002年   3篇
  2000年   3篇
  1999年   1篇
  1998年   5篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1991年   1篇
  1986年   1篇
  1982年   1篇
排序方式: 共有169条查询结果,搜索用时 31 毫秒
31.
32.
Xia  Y.F.  Xiao  N.Y. 《Earth, Moon, and Planets》2000,88(2):75-87
Love numbers of second order of Venus are calculated with resolving fundamental differential equations of elastic body according to the parameters of the density and the elasticity of material by means of the PVM94-01 Venus model. Meanwhile, the elastic energy of deformation of second order due to the tidal perturbation of the Sun and that due to rotational centrifugal potential are also calculated. The values of Love number provide a basis for model of internal structure of Venus. The numerical calculation of the elastic energy of deformation gives a magnitude evaluation of the perturbation terms to the Hamiltonian expressions in the study of dynamics of the elastic Venus. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
33.
We review two models describing the Venus climate system: the carbonate and pyrite models. It has been argued carbonate and pyrite are potentially important minerals controlling the climate of Venus, though existence of either minerals has not been confirmed. Although it used to be proposed that carbonation reaction might explain the Venus’ atmospheric CO2 abundance, it is unlikely Venus’ surface is reactive enough to control the Venus’ massive CO2 atmosphere. Venus’ surface carbonate is also able to affect the climate through the reaction with atmospheric SO2 to form anhydrite. Under the carbonate model the climate state is not in equilibrium and would be unstable due to the reaction between carbonate and SO2. On the other hand, pyrite-magnetite reaction is proposed to explain the Venus’ atmospheric SO2 abundance. Under pyrite-magnetite reaction, however, the climate would be stabilized such that the existing climate state is maintained over a geological timescale, while some observational facts such as atmospheric abundance of SO2 and surface temperature could also be reasonably explained.  相似文献   
34.
Effects of eruption history and cooling rate on lava dome growth   总被引:1,自引:1,他引:0  
To better understand the factors controlling the shapes of lava domes, laboratory simulations, measurements from active and prehistoric flows and dimensional analysis were used to explore how effusion history and cooling rate affect the final geometry of a dome. Fifty experiments were conducted in which a fixed volume of polyethylene glycol wax was injected into a tank of cold sucrose solution, either as one continuous event or as a series of shorter pulses separated by repose periods. When the wax cooling rates exceeded a critical minimum value, the dome aspect ratios (height/diameter) increased steadily with erupted volume over the course of a single experiment and the rate at which height increased with volume depended linearly on the time-averaged effusion rate. Thus the average effusion rate could be estimated from observations of how the dome shape changed with time. Our experimental results and dimensional analyses were compared with several groups of natural lava flows: the recently emplaced Mount St Helens and Soufrière domes, which had been carefully monitored while active; three sets of prehistoric rhyolite domes that varied in eruptive style and shape; and two sets of Holocene domes with similar shapes, but different compositions. Geometric measurements suggest that dome morphology can be directly correlated with effusion rate for domes of similar composition from the same locality, and that shape alone can be related to a dimensionless number comparing effusion rate and cooling rate. Extrapolation to the venusian pancake domes suggests that they formed from relatively viscous lavas extruded either episodically or at average effusion rates low enough to allow solidified surface crust to exert a dominating influence on the final morphology.  相似文献   
35.
A fast method is presented for deriving the tropospheric CO concentrations in the Venus atmosphere from near-infrared spectra using the night side 2.3 μm window. This is validated using the spectral fitting techniques of Tsang et al. [Tsang, C.C.C., Irwin, P.G.J., Taylor, F.W., Wilson, C.F., Drossart, P., Piccioni, G., de Kok, R., Lee, C., Calcutt, S.B., and the Venus Express/VIRTIS Team, 2008a. Tropospheric carbon monoxide concentrations and variability on Venus with Venus Express/VIRTIS-M observations. J. Geophys. Res. 113, doi: 10.1029/2008JE003089. E00B08] to show that monitoring CO in the deep atmosphere can be done quickly using large numbers of observations, with minimal effect from cloud and temperature variations. The new method is applied to produce some 1450 zonal mean CO profiles using data from the first eighteen months of operation from the Visible and Infrared Thermal Imaging Spectrometer infrared mapping subsystem (VIRTIS-M-IR) on Venus Express. These results show many significant long- and short-term variations from the mean equator-to-pole increasing trend previously found from earlier Earth- and space-based observations, including a possible North-South dichotomy, with interesting implications for the dynamics and chemistry of the lower atmosphere of Venus.  相似文献   
36.
We present radiative transfer modelling of thermal emission from the nightside of Venus in two ‘spectral window’ regions at 1.51 and 1.55 μm. The first discovery of these windows, reported by Erard et al. [Erard, S., Drossart, P., Piccioni, G., 2009. J. Geophys. Res. Planets 114, doi:10.1029/2008JE003116. E00B27], was achieved using a principal component analysis of data from the VIRTIS instrument on Venus Express. These windows are spectrally narrow, with a full-width at half-maximum of ∼20 nm, and less bright than the well-known 1.7 and 2.3 μm spectral windows by two orders of magnitude.In this note we present the first radiative transfer analysis of these windows. We conclude that the radiation in these windows originates at an altitude of 20-35 km. As is the case for the other infrared window regions, the brightness of the windows is affected primarily by the optical depth of the overlying clouds; in addition, the 1.51 μm radiance shows a very weak sensitivity to water vapour abundance.  相似文献   
37.
European Venus Explorer (EVE): an in-situ mission to Venus   总被引:1,自引:0,他引:1  
The European Venus Explorer (EVE) mission was proposed to the European Space Agency in 2007, as an M-class mission under the Cosmic Vision Programme. Although it has not been chosen in the 2007 selection round for programmatic reasons, the EVE mission may serve as a useful reference point for future missions, so it is described here. It consists of one balloon platform floating at an altitude of 50–60 km, one descent probe provided by Russia, and an orbiter with a polar orbit which will relay data from the balloon and descent probe, and perform science observations. The balloon type preferred for scientific goals is one which oscillates in altitude through the cloud deck. To achieve this flight profile, the balloon envelope contains a phase change fluid, which results in a flight profile which oscillates in height. The nominal balloon lifetime is 7 days—enough for one full circumnavigation of the planet. The descent probe’s fall through the atmosphere takes 60 min, followed by 30 min of operation on the surface. The key measurement objectives of EVE are: (1) in situ measurement from the balloon of noble gas abundances and stable isotope ratios, to study the record of the evolution of Venus; (2) in situ balloon-borne measurement of cloud particle and gas composition, and their spatial variation, to understand the complex cloud-level chemistry; (3) in situ measurements of environmental parameters and winds (from tracking of the balloon) for one rotation around the planet, to understand atmospheric dynamics and radiative balance in this crucial region. The portfolio of key measurements is complemented by the Russian descent probe, which enables the investigation of the deep atmosphere and surface.  相似文献   
38.
A comparative study of the viscous transport of solar wind momentum to the upper layers of the Venus ionosphere with that occurring within the trans-terminator flow leads to estimates of the ratio of the viscosity coefficients that are applicable to both cases. Support for viscous forces between the solar wind and the ionospheric plasma in the trans-terminator flow derives from the momentum flux balance between the momentum flux in the latter flow and the deficiency of solar wind momentum along the flanks of the ionosheath. By comparing the relative width of the viscous boundary layer in the Venus ionosheath and the width of the trans-terminator flow we find that the transport of momentum within the upper ionosphere proceeds at a rate similar to that at which momentum is delivered to the upper ionosphere from the solar wind. Comparable values are obtained for the viscosity coefficient of the solar wind that streams over the ionosphere and that implied from momentum transport within the ionospheric trans-terminator flow. It is further suggested that despite the different nature of the processes that give place to the viscous transport of the solar wind momentum to the upper ionosphere (wave-particle interactions) and those responsible for its distribution within the ionosphere (through coulombian collisions) there is a similar response in the behavior of both plasmas to momentum transport. Calculations show that with comparable values of the viscosity coefficient in the ionosheath and in the upper ionospheric plasma the mean free path suitable to wave-particle interactions in the ionosheath is of the same order of magnitude as the mean free path of the planetary O+ ions that interact through coulombian collisions in the upper ionosphere. The effects of this similarity are considered in the discussion.  相似文献   
39.
We analyze FUV spatially-resolved dayglow spectra obtained at 0.37 nm resolution by the UVIS instrument during the Cassini flyby of Venus. We use a least-squares fit method to determine the brightness of the OI emissions at 130.4 and OI 135.6 nm, and of the bands of the CO fourth positive system which are dominated by fluorescence scattering. We compare the brightness observed along the UVIS foot track of the two OI multiplets with that deduced from a model of the excitation of these emissions by photoelectron impact on O atoms and resonance scattering of the solar 130.4 nm emission. The large optical thickness 130.4 nm emission is accounted for using a radiative transfer model. The airglow intensities are calculated along the foot track and found to agree with the observed 130.4 nm brightness within ∼10%. The modeled OI 135.6 nm brightness is also well reproduced by the model. The oxygen density profile of the VTS3 model is found to be consistent with the observations. We find that self-absorption of the (0, v″) bands of the fourth positive emission of CO is important and we derive a CO vertical column of about 6.4 × 1015 cm−2 in close agreement with the value provided by the VTS3 empirical atmospheric model.  相似文献   
40.
Ultraviolet (UV) nightglow data from the SPICAV instrument (SPectroscopy for the Investigation of the Characteristics of the Atmosphere of Venus) onboard the Venus Express spacecraft, currently in orbit around Venus, are presented. In its extended source mode, SPICAV has shown that the Venus nightglow in the UV contains essentially Lyman-α and Nitric Oxide (NO) emissions. In the stellar mode, when the slit of the spectrometer is removed, an emission is also observed at the limb in addition to the stellar spectrum. A forward model allows us to identify this feature as being an NO emission. Due to radiative recombination of N and O atoms produced on the dayside of Venus, and transported to the nightside, NO nightglow provides important constraints to the Solar-to-Anti Solar thermospheric circulation prevailing above 90 km. The forward model presented here allows us to derive the altitude of the peak of emission of the NO layer, found at 113.5±6 km, as well as its scale height, of 3.4±1 km and its brightness. The latter is found to be very variable with emissions between 19 Kilo-Rayleigh (kR) and 540 kR. In addition, the NO nightglow is sometimes very patchy, as we are able to observe two distinct emission zones in the field of view. Finally, systematic extraction of this emission from stellar occultations extends the database of the NO emission already reported elsewhere using limb observations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号