首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1284篇
  免费   196篇
  国内免费   15篇
测绘学   4篇
大气科学   3篇
地球物理   1024篇
地质学   208篇
海洋学   7篇
天文学   3篇
综合类   31篇
自然地理   215篇
  2023年   10篇
  2022年   17篇
  2021年   30篇
  2020年   15篇
  2019年   24篇
  2018年   19篇
  2017年   32篇
  2016年   18篇
  2015年   28篇
  2014年   47篇
  2013年   51篇
  2012年   33篇
  2011年   49篇
  2010年   49篇
  2009年   55篇
  2008年   63篇
  2007年   82篇
  2006年   86篇
  2005年   68篇
  2004年   80篇
  2003年   63篇
  2002年   59篇
  2001年   45篇
  2000年   44篇
  1999年   43篇
  1998年   38篇
  1997年   35篇
  1996年   50篇
  1995年   35篇
  1994年   46篇
  1993年   36篇
  1992年   42篇
  1991年   25篇
  1990年   24篇
  1989年   11篇
  1988年   10篇
  1987年   5篇
  1986年   9篇
  1985年   6篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   4篇
  1954年   1篇
排序方式: 共有1495条查询结果,搜索用时 15 毫秒
971.
Singapore and Kuala Lumpur, the capital of Malaysia, may well represent the classic examples of area with low seismic hazard but with high consequence. Both cities are located in a low-seismicity region of Southeast Asia, where active seismic sources are located more than 300 km away. Seismic designs have not been implemented in this seemingly low-hazard region though distant earthquakes in Sumatra had frequently shaken high-rise structures in the two cities. Several studies have been conducted to systematically assess the seismic hazards of Singapore and the Malay Peninsula. The present research particularly addresses issues in deriving a new set of attenuation relationships of peak ground acceleration (PGA), peak ground velocity (PGV) and response spectral acceleration (RSA) for the Sumatran-subduction earthquakes. To be relevant for the seismic hazard assessment of the remote metropolises, the derived attenuation relationships cover a long distance range from 150 to 1500 km. The attenuation relationships are derived using synthetic seismograms that account for source and path effects. The uncertainties in rupture parameters, such as stress drop, strike, dip and rake angles, have been defined according to the regional geological and tectonic settings as well as the ruptures of previous earthquakes. The seismic potential of the Sumatran subduction zone are high in the region from 2°N to 5°S as there has been no recurrence of great thrust events since 1861. A large event with Mw greater than 7.8 in this particular subduction zone may be capable of generating destructive ground motions in Singapore and Kuala Lumpur, even at a distance of 700 km.  相似文献   
972.
973.
The systematic analysis of seismograms recorded on the Romanian territory using Vrancea intermediate-depth earthquakes shows a strong asymmetric pattern relative to the epicentral area: on one side, in the Transylvanian Basin and the Eastern Carpathians (approximately along the inner volcanic chain), the amplitudes are reduced by a factor of 20 on average and the high frequencies are attenuated, in contrast with the other side, in the foreland platform. This pattern is explained by a significant attenuation increase caused by a strong lateral variation of the structure in the upper mantle, immediately towards NW of the Vrancea seismic active volume. This region corresponds to the most recent volcanic activity in the Persani Mountains and with the low-velocity body adjacent toward NW to the high-velocity body subducted beneath Vrancea area as indicated by seismic tomography and heat flow results. The CALIXTO'99 tomography experiment, deployed for 6 months in 1999, provides the largest number of observations for Vrancea earthquakes ever recorded on the Romanian territory. We select data from 8 earthquakes generated in this time interval in the Vrancea nest, which were recorded with signal / noise ratio greater than 5 by at least 25 stations. All of them are small- to moderate-magnitude events (3.6 ≤ Mw ≤ 4.2). The attenuation is much more important in the high-frequency range (> 1 Hz), than at low frequencies. Since the large Vrancea earthquakes can radiate significant energy in the low-frequency range (< 1 Hz), our results show that the seismic hazard level is much more uniform all over the Romanian territory in the low-frequency range than in the high-frequency range.  相似文献   
974.
975.
The 1511 Western Slovenia earthquake (M = 6.9) is the largest event occurred so far in the region of the Alps–Dinarides junction. Though it strongly influences the regional seismic hazard assessment, the epicenter and mechanism are still under debate. The complexity of the active tectonics of the Alps–Dinarides junction is reflected by the presence of both compressional and transpressional deformations. This complexity is witnessed by the recent occurrence of three main earthquake sequences, the 1976 Friuli thrust faulting events, the 1998 Bovec–Krn Mountain and the 2004 Kobarid strike-slip events. The epicenters of the 1998 and 2004 strike-slip earthquakes (Ms = 5.7 and Ms = 4.9, respectively) lie only 50 km far from the 1976 thrust earthquake (Ms = 6.5).We use the available macroseismic data and recent active tectonics studies, to assess a possible epicenter and mechanism for the 1511 earthquake and causative fault. According with previous works reported in the literature, we analyze both a two-and a single-event case, defining several input fault models. We compute synthetic seismograms up to 1 Hz in an extended-source approximation, testing different rupture propagations and applying a uniform seismic moment distribution on the fault segments. We extract the maximum horizontal velocities from the synthetics and we convert them into intensities by means of an empirical relation. A rounded-to-integer misfit between observed and computed intensities is performed, considering both a minimized and a maximized databases, built to avoid the use of half-degree macroseismic intensity data points. Our results are consistent with a 6.9 magnitude single event rupturing 50 km of the Idrija right-lateral strike-slip fault with bilateral rupture propagation.  相似文献   
976.
977.
978.
We respond to the comments by Douglas regarding our earlier paper by emphasizing that our automated method was intended to distinguish between the primary and auxiliary fault planes in earthquake focal mechanisms and does not always produce reliable results for rupture velocity and rupture length.  相似文献   
979.
980.
Polar motion is modelled for the large 2004 Sumatra earthquake via dislocation theory for an incompressible elastic earth model, where inertia perturbations are due to earthquake-triggered topography of density–contrast interfaces, and for a compressible model, where inertia perturbation due to compression-dilatation of Earth's material is included; density and elastic parameters are based on a multilayered reference Earth. Both models are based on analytical Green's functions, propagated from the centre to the Earth's surface. Preliminary and updated seismological solutions are considered in elucidating the effects of improving earthquake parameters on polar motion. The large Sumatra thrust earthquake was particularly efficient in driving polar motion since it was responsible for large material displacements occurring orthogonally to the strike of the earthquake and to the Earth's surface, as imaged by GRACE gravity anomalies over the earthquake area. The effects of earthquake-induced topography are four times larger than the effects of Earth's compressibility, for l = 2 geopotential components. For varying compressional Earth properties and seismic solution, modelled polar motion ranges from 8.6 to 9.4 cm in amplitude and between 117° and 130° east longitude in direction. The close relationship between polar motion direction, earthquake longitude and thrust nature of the event, are established in terms of basic physical concepts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号