首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   36篇
  国内免费   3篇
测绘学   1篇
大气科学   1篇
地球物理   117篇
地质学   7篇
海洋学   13篇
自然地理   6篇
  2021年   4篇
  2020年   14篇
  2019年   9篇
  2018年   9篇
  2017年   8篇
  2016年   4篇
  2015年   9篇
  2014年   6篇
  2013年   8篇
  2012年   8篇
  2011年   5篇
  2010年   6篇
  2009年   6篇
  2008年   7篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2004年   6篇
  2003年   4篇
  2002年   2篇
  2000年   6篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
排序方式: 共有145条查询结果,搜索用时 15 毫秒
141.
This study uses a unique 10‐year tracer dataset from a small gravel‐bed stream to examine bed mobility and sediment dispersion over long timescales and at a range of spatial scales. Seasonal tracer data that captured multiple mobilizing events was examined, while the effects of morphology on bed mobility and sediment dispersion were captured at three spatial scales: within morphological units (unit scale), between morphological units (reach scale) and between reaches with different channel morphologies (channel scale). This was achieved by analyzing both reach‐average mobility and travel distance data, as well as the development of ‘mobility maps’ that capture the spatial variability in tracer mobility within the channel. The tracer data suggest that sediment transport in East Creek remains near critical the majority of the time, with only rare large events resulting in high mobility rates and grain travel distances large enough to move sediment past dominant bedforms. While a variable capturing both the magnitude and frequency of flow events within a season yielded a better predictor to sediment mobility and dispersion than peak discharge alone, the distribution of events of different magnitude within the season played a large role in determining tracer mobility rates and travel distances. The effects of morphology differed depending on the analysis scale, demonstrating the importance of scale, and therefore study design, when examining the effect of morphology on sediment transport. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
142.
Short-term channel dynamics of mountain stream reaches in the southern North Island of New Zealand were assessed over two successive 3-month periods using morphological budgeting. Response to floods varies between reaches, even when the catchments were located close to each other and had similar characteristics. The reaches on the Central Volcanic Plateau experienced least morphological change, while streams with steep catchments and migrating planform in the Tararua and Ruahine Ranges showed frequent channel adjustments. Channel response is conditioned by intrinsic variables rendering reaches responsive or robust to the effects of floods, and this is likely to reflect the degree of connectivity between slopes and channels, and reaches.  相似文献   
143.
144.
145.
The benefits of three simple modifications to the design of a Birkbeck bedload slot‐sampling system that has been continuously operating in Nahal Eshtemoa, Israel, since the early 1990s are demonstrated. The modifications include the deployment of a removable slot cover which delays the accumulation of sediment, so allowing sampling at late stages of a flood and, in conjunction with other samplers, extending the period of sampling during a flood wave; inclusion of a slot the size of which is adjustable so that that the probability of sampling the largest clast sizes in transit as bedload can be increased post‐installation, once knowledge is gained about the bedload grain‐size distribution; and a sampler side‐wall door that allows stratification and textural changes within the accumulated bedload to be identified, so promoting intelligent sampling of the deposit for grain‐size determination. Results from seven flash‐floods are presented and discussed, with recommendations for bedload monitoring, particularly in rivers where sediment flux is high and dynamic sediment records are inevitably short because of instrumental limitations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号