首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   15篇
  国内免费   34篇
测绘学   2篇
大气科学   10篇
地球物理   32篇
地质学   51篇
海洋学   30篇
天文学   14篇
综合类   8篇
自然地理   2篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   6篇
  2017年   5篇
  2016年   5篇
  2015年   2篇
  2014年   3篇
  2013年   11篇
  2012年   7篇
  2011年   10篇
  2010年   3篇
  2009年   9篇
  2008年   10篇
  2007年   10篇
  2006年   6篇
  2005年   4篇
  2004年   8篇
  2003年   7篇
  2002年   4篇
  2001年   7篇
  2000年   3篇
  1999年   2篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1994年   1篇
  1993年   1篇
  1991年   3篇
  1980年   1篇
排序方式: 共有149条查询结果,搜索用时 15 毫秒
111.
考虑损伤效应的岩石类材料局部化特性分析   总被引:5,自引:4,他引:1  
在各向同性损伤条件下,考虑岩石损伤过程中的刚度降低和体积扩容,通过理论推导建立了岩石发生分叉失稳时的最大硬化模量和临界局部化方向,探讨了局部化方向角对于岩石的损伤程度和初始泊松比的依赖关系,并对平面应力与平面应变两种条件下单轴拉伸试件的分叉特性进行了对比分析。研究表明,岩石的初始泊松比与损伤程度越大,局部化方向角越大;尽管平面应力与平面应变条件下单轴拉伸问题的局部化方向角具有相似的变化趋势,但平面应力条件下的局部化方向角低于平面应变条件下同样情况下的局部化方向角。  相似文献   
112.
吕宋海峡是南海与外界水交换的重要通道,黑潮作为北太平洋最强的1支西边界流,在经过吕宋海峡时会对南海北部的环流和环境产生重要影响。本文用1991—2011年期间CTD断面实测资料和高度计资料,提取23.0~25.5 kg/m3等密度面之间的盐度极大值,研究了南海北部不同年月盐度极大值变化、黑潮入侵方式与强弱,以及盐度极大值变化与北赤道流分叉点南北移动的关系,结果表明:(1)黑潮入侵南海方式多样,既有分支形式,也有弯曲、流套形式。(2)不同年月间,黑潮入侵南海的强弱存在较大差别,120°E断面的次表层盐度极大值的变动可超过0.3。(3)北赤道流分叉点位置的南北变动对黑潮入侵南海的强弱具有重要影响:北赤道流分叉点位置偏北,黑潮入侵南海较强;北赤道流分叉点位置偏南,则黑潮入侵相对较弱。  相似文献   
113.
综述了近20年来国内外学者在研究北太平洋西边界流的平均结构及NEC分叉动力机制、NM K流系平均输运的分配及变化、NM K流系季节及年际变化规律及其与EN SO之间的关系、NM K流系在热带和亚热带水交换中的作用以及水团的平均分布特征等方面所取得的主要成果。通过分析,发现东亚季风、R ossby波和K e lv in波等是影响北太平洋西边界流的主要因素;而缺乏长期直接的海流观测资料是深入研究北太平洋西边界流遇到的最大障碍。  相似文献   
114.
土体应变局部化现象的理论解析   总被引:7,自引:6,他引:1  
钱建固  黄茂松 《岩土力学》2005,26(3):432-436
引起土体失稳的应变局部化现象是在特定应力状态下,土体本构产生的分叉特性。基于有限变形理论推导了应变局部化产生的三维解析解。基于应变局部化的理论解析,分析了轴对称和平面应变条件下应变局部化现象在弹塑性硬化阶段的存在性以及剪切带的方向性。 理论分析表明,在轴对称条件下,土体应变局部化产生于土体应力-应变的软化阶段,而平面应变条件下,土体应变局部化一般出现在应力-应变的硬化阶段,其剪切带方向角的理论预测与Arthur等[1]建议值较为一致。  相似文献   
115.
Numerical studies with a spherical dynamo model have shown two remarkable phenomena. The model consists of a spherical body of an electrically conducting incompressible uid surrounded by free space. In addition to a rotation of the body an inner motion due to a given forcing is considered which satisfies a no–slip condition at the boundary. The full interaction of magnetic field and motion is taken into account. Starting from a fluid motion capable of dynamo action and a very weak magnetic field it was observed that the growing magnetic field destroys the dynamo property of the motion and then decays, and that the system ends up in a state with another motion incapable of dynamo action and zero magnetic field. In another case with a motion unable to prevent small magnetic fields from decay it proved to be possible that stronger magnetic fields deform it so that a dynamo starts to work which enables the system to approach a steady state with a finite magnetic field.  相似文献   
116.
Bifurcations are key geomorphological nodes in anabranching and braided fluvial channels, controlling local bed morphology, the routing of sediment and water, and ultimately defining the stability of their associated diffluence–confluence unit. Recently, numerical modelling of bifurcations has focused on the relationship between flow conditions and the partitioning of sediment between the bifurcate channels. Herein, we report on field observations spanning September 2013 to July 2014 of the three‐dimensional flow structure, bed morphological change and partitioning of both flow discharge and suspended sediment through a large diffluence–confluence unit on the Mekong River, Cambodia, across a range of flow stages (from 13 500 to 27 000 m3 s?1). Analysis of discharge and sediment load throughout the diffluence–confluence unit reveals that during the highest flows (Q = 27 000 m3 s?1), the downstream island complex is a net sink of sediment (losing 2600 ± 2000 kg s?1 between the diffluence and confluence), whereas during the rising limb (Q = 19 500 m3 s?1) and falling limb flows (Q = 13 500 m3 s?1) the sediment balance is in quasi‐equilibrium. We show that the discharge asymmetry of the bifurcation varies with discharge and highlight that the influence of upstream curvature‐induced water surface slope and bed morphological change may be first‐order controls on bifurcation configuration. Comparison of our field data to existing bifurcation stability diagrams reveals that during lower (rising and falling limb) flow the bifurcation may be classified as unstable, yet transitions to a stable condition at high flows. However, over the long term (1959–2013) aerial imagery reveals the diffluence–confluence unit to be fairly stable. We propose, therefore, that the long‐term stability of the bifurcation, as well as the larger channel planform and morphology of the diffluence–confluence unit, may be controlled by the dominant sediment transport regime of the system. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
117.
The Bulle effect is a phenomenon in which a disproportionately higher amount of near‐bed sediment load at a fluvial diversion moves into the diverted channel, even for cases in which the proportion of water (with respect to the main flow) entering the diversion channel is relatively small. This phenomenon has wide‐ranging implications for both engineered and natural systems: from efficient design of channels to redirect water and sediment for reclaiming sinking deltas, designing navigational channels that do not need frequent dredging, to morphological evolution of river bifurcations. The first ever, and one of the most extensive set of experiments conducted to explore this phenomenon, were conducted by Bulle in 1926 . In the current study the experiments conducted by Bulle have been simulated using an open‐source, free‐surface finite‐element‐based hydrodynamic solver. The main objectives were to explore to what extent the complex phenomenon of the Bulle effect at the scale of a laboratory experiment can be simulated accurately using Reynolds‐averaged Navier–Stokes (RANS)‐based hydrodynamic solver, and to understand the details of the hydrodynamics that Bulle could not analyze through his experiments. The hydrodynamics captured by the simulations were found to match the observations made by Bulle through his experiments, and the distributions of sediment at the diversion predicted by the numerical simulations were found to match the general trend observed in the laboratory experiments. The results from the numerical simulations were also compared with existing one‐dimensional models for sediment distribution at bifurcations, and the three‐dimensional numerical model was found to perform appreciably better. This is expected due to the complex flow features at the diversion, which can only be captured satisfactorily using a three‐dimensional hydrodynamic model. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
118.
Flood hazard maps used to inform and build resilience in remote communities in the Terai region of southern Nepal are based on outdated and static digital elevation models (DEMs), which do not reflect dynamic river configuration or hydrology. Episodic changes in river course, sediment dynamics, and the distribution of flow down large bifurcation nodes can modify the extent of flooding in this region, but these processes are rarely considered in flood hazard assessment. Here, we develop a 2D hydrodynamic flood model of the Karnali River in the Terai region of west Nepal. A number of scenarios are tested examining different DEMs, variable bed elevations to simulate bed aggradation and incision, and updating bed elevations at a large bifurcation node to reflect field observations. By changing the age of the DEM used in the model, a 9.5% increase in inundation extent was observed for a 20-year flood discharge. Reducing horizontal DEM resolution alone resulted in a <1% change. Uniformly varying the bed elevation led to a 36% change in inundation extent. Finally, changes in bed elevation at the main bifurcation to reflect observed conditions resulted in the diversion of the majority of flow into the west branch, consistent with measured discharge ratios between the two branches, and a 32% change in inundation extent. Although the total flood inundation area was reduced (−4%), there was increased inundation along the west bank. Our results suggest that regular field measurements of bed elevation and updated DEMs following large sediment-generating events, and at topographically sensitive areas such as large river bifurcations, could help improve model inputs in future flood prediction models. This is particularly important following flood events carrying large sediment loads out of mountainous regions that could promote bed aggradation and channel switching across densely populated alluvial river systems and floodplains further downstream. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
119.
The Kvíárj(o)kull.a southern outlet glacier of the Vatnaj(o)kull,is confined in the mountain foreland by lateral moraines measuring a height of up to 150 m.Each of the lateral moraines shows consjderable breaches with deviations of the main moraine ridges.The paper discusses the possible origins of these modifications of the lateral moraines as result of:1)ice overlappings during glacier advances and subsequent breaches of the lateraltongue triggered by the preglacial relief conditions and the prehistorical moraine landscape leading to affiux conditions,3)drainage of ice-marginal glacier lakes and 4.volcanic activities,such as lava flows and volcanic-induced j(o)kulhlaups. A historic-genetic model of the formation of the lateral moraines is presented considering the breaches in the lateral moraines as result from glacier bifurcations and therefore as former tributary tongue basins.Such breaches in the lateral moraines are also common landscape features at glaciers outside of Iceland and are from wider importance for the paleoreconstruction of former glacier stages.The knowledge of their development is essential for an adequate relative age classification of individual moraine ridges.In regard to the origin of the debris the resedimentation of prehistoric till deposits by younger glacier advances plays a role in the formation of the lateral moraines apart from englacial and supraglacial sediment transfer processes.  相似文献   
120.
Part Ⅱ of this study detects the dominant decadal-centennial timescales in four SST indices up to the 2010/2011 winter and tries to relate them to the observed 11-yr and 88-yr solar activity with the sunspot number up to Solar Cycle 24.To explore plausible solar origins of the observed decadal-centennial timescales in the SSTs and climate variability in general,we design a simple one-dimensional dynamical system forced by an annual cycle modulated by a small-amplitude single-or multi-scale "solar activity." Results suggest that nonlinear harmonic and subharmonic resonance of the system to the forcing and period-doubling bifurcations are responsible for the dominant timescales in the system,including the 60-yr timescale that dominates the Atlantic Multidecadal Oscillation.The dominant timescales in the forced system depend on the system’s parameter setting.Scale enhancement among the dominant response timescales may result in dramatic amplifications over a few decades and extreme values of the time series on various timescales.Three possible energy sources for such amplifications and extremes are proposed.Dynamical model results suggest that solar activity may play an important yet not well recognized role in the observed decadal-centennial climate variability.The atmospheric dynamical amplifying mechanism shown in Part Ⅰ and the nonlinear resonant and bifurcation mechanisms shown in Part Ⅱ help us to understand the solar source of the multi-scale climate change in the 20th century and the fact that different solar influenced dominant timescales for recurrent climate extremes for a given region or a parameter setting.Part Ⅱ also indicates that solar influences on climate cannot be linearly compared with non-cyclic or sporadic thermal forcings because they cannot exert their influences on climate in the same way as the sun does.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号