首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   291篇
  免费   94篇
  国内免费   23篇
测绘学   19篇
地球物理   201篇
地质学   74篇
海洋学   41篇
综合类   9篇
自然地理   64篇
  2024年   3篇
  2023年   9篇
  2022年   10篇
  2021年   34篇
  2020年   33篇
  2019年   26篇
  2018年   28篇
  2017年   22篇
  2016年   27篇
  2015年   22篇
  2014年   30篇
  2013年   31篇
  2012年   13篇
  2011年   17篇
  2010年   13篇
  2009年   17篇
  2008年   20篇
  2007年   10篇
  2006年   10篇
  2005年   6篇
  2004年   4篇
  2003年   2篇
  2002年   8篇
  2001年   1篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
排序方式: 共有408条查询结果,搜索用时 17 毫秒
111.
从土壤侵蚀角度诠释泥沙连通性   总被引:3,自引:0,他引:3       下载免费PDF全文
张光辉 《水科学进展》2021,32(2):295-308
泥沙连通性是近10年来国际上的研究热点,从土壤侵蚀角度准确理解泥沙连通性至关重要。泥沙连通性表征流域内不同地貌或景观单元间的泥沙级联关系,受气候、地质地貌、流域特性、地形条件、土壤属性、植被特性、水文过程、土壤侵蚀以及人类社会活动及其时空变化的综合影响,泥沙连通性具有明显的时空变异特征。研究泥沙连通性的方法包括野外调查法、图论法、指标法和模型模拟法,不同方法的理论基础、数据要求、实施过程与结果存在一定差异,连通性指数目前应用最为广泛,但该指数更多强调结构连通性。亟需加强泥沙连通性概念与物理含义、影响因素及其动力机制、研究方法与指标体系等方面研究,明确泥沙连通性与水文连通性、土壤侵蚀和泥沙输移比的关系,分析水土保持措施对泥沙连通性的影响及其动力机制。  相似文献   
112.
Erosion of soil by water is facilitated by both diffusive and fluvial processes. Here we examine three different soil redistribution processes operating at very different spatial and temporal scales in the monsoonal tropics of northern Australia. The first process, rainsplash, operates across the entire catchment. This process, while subject to annual and seasonal variations in rainfall amount and intensity, can be considered a constant forcing and redistributes on average 9 t ha−1 year−1 (range −0.9 to 19 t ha−1 year−1). The second process, bioturbation, where in this study soil is disturbed by feral pigs (wild boar), occurs in selected areas throughout each year. Pigs exhume 3 to 36.0 t ha−1 year−1 (average ~11 t ha−1 year−1). The effect of this disturbance may last for many years afterwards. The third process is the disturbance of the soil surface by tree throw and creation of pit–mound topography (also a form of bioturbation), together with the resultant placement of the tree superstructure (above ground biomass) on the ground, which may form debris dams. Tree throw at the scale examined here is likely to occur only once every 50–100 years, with the influence of this single event lasting for at least 10 years post event. Tree throw in a single event exhumed ~5 t ha−1 (1.1–9.5 t ha−1) of soil. In contrast to rainsplash, pig disturbance and tree throw events are largely point-based phenomena. Field observation suggests that it takes many years for the disturbance from both pigs and tree throw to be removed. We find here that in terms of relative soil redistribution, rainsplash has the largest influence, with any erosional disturbance by pigs and tree throw being within the variability of rainsplash. However, the disruption of surface flow by the pig digs and tree throw disrupts sedimentological and hydrological connectivity.  相似文献   
113.
The concept of the sediment delivery problem was introduced into the literature in 1983 by Des Walling. This concept describes how only a fraction of sediment eroded within a catchment will reach the basin outlet and be represented as sediment yield, and that sediment storage mechanisms operating within a catchment explain this discrepancy. Since this paper was published, geomorphologists have been examining in great detail the fate of sediment eroded from the landsurface, and the pathways and timeframes of sediment transport and storage in catchments. However, to fully understand the internal dynamics of sediment flux requires a ‘fresh look at the sediment delivery problem’. A framework is required that can incorporate the various processes involved in sediment movement from source areas through a basin to its outlet, and can take account of the spatial distribution of, and timeframes over which, these processes operate. This paper presents a conceptual framework for analysis of catchment (dis)connectivity that incorporates both spatial and temporal variability in the operation of the sediment cascade. This approach examines where blockages occur to disrupt these longitudinal, lateral and vertical linkages in catchments. Depending on the position of blockages (termed buffers, barriers and blankets), and their sediment residence time, various parts of a catchment may be actively contributing sediment to the sediment cascade and be switched on, or inactive and switched off. This paper discusses how such a framework can be used to model response times to disturbance and explain the manifestation of geomorphic change in catchments. The paper then highlights challenges geomorphologists face in applying such a framework to understand the internal dynamics of the catchment sediment cascades, and forecast how environmental change might affect the operation of sediment fluxes into the future. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
114.
115.
Linking landscape morphological complexity and sediment connectivity   总被引:2,自引:0,他引:2  
Connectivity relates to the coupling of landforms (e.g. hillslopes and channels) and the transfer of water and sediment between them. The degree to which parts of a catchment are connected depends largely on the morphological complexity of the catchment's landscape. Landscapes can have very different and distinct morphologies, such as terraces, V‐shaped valleys or broad floodplains. The objective of this study is to better understand and quantify the relation between landscape complexity and catchment connectivity. We hypothesize that connectivity decreases with increasing landscape morphological complexity. To quantify the connectivity–complexity relationship virtual digital elevation models (DEMs) with distinct morphologies were used as inputs into the landscape evolution model LAPSUS to simulate the sediment connectivity of each landscape. Additionally, the hypothesis was tested on six common real DEMs with widely different morphologies. Finally, the effects of different rainfall time series on catchment response were explored. Simulation results confirm the hypothesis and quantify the non‐linear relation. Results from the exploration of sediment connectivity in response to sequences of rainfall events indicate that feedback between erosion and deposition are more important for certain landscape morphologies than for others: for a given rainfall input, a more effective sediment connectivity and erosion response may be expected from rolling or V‐shaped catchments than from dissected or stepped landscapes. Awareness of the differences in the behaviour and response of different morphologies to catchment processes provides valuable information for the effective management of landscapes and ecosystems through efficiently designed soil and water conservation measures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
116.
Abstract

Rivers have been channelized, deepened and constrained by embankments for centuries to increase agricultural productivity and improve flood defences. This has decreased the hydrological connectivity between rivers and their floodplains. We quantified the hydrological regime of a wet grassland meadow prior to and after the removal of river embankments. River and groundwater chemistry were also monitored to examine hydrological controls on floodplain nutrient status. Prior to restoration, the highest river flows (~2 m3 s?1) were retained by the embankments. Under these flow conditions the usual hydraulic gradient from the floodplain to the river was reversed so that subsurface flows were directed towards the floodplain. Groundwater was depleted in dissolved oxygen (mean: 0.6 mg O2 L?1) and nitrate (mean: 0.5 mg NO3 ?-N L?1) relative to river water (mean: 10.8 mg O2 L?1 and 6.2 mg NO3 ?-N L?1, respectively). Removal of the embankments has reduced the channel capacity by an average of 60%. This has facilitated over-bank flow which is likely to favour conditions for improved flood storage and removal of river nutrients by floodplain sediments.

Editor Z.W. Kundzewicz; Associate editor K. Heal

Citation Clilverd, H.M., Thompson, J.R., Heppell, C.M., Sayer, C.D., and Axmacher, J.C., 2013. River–floodplain hydrology of an embanked lowland Chalk river and initial response to embankment removal. Hydrological Sciences Journal, 58 (3), 627–650.  相似文献   
117.
《Urban geography》2013,34(8):750-770
This study examines patterns in international telephone communications, documenting a close relationship between international call volume aggregated by nation and indicators of global connectivity including volume of international trade, tourism and migration. In addition, the analysis documents the existence of a set of national "communities" of callers. The clear orientation of large portions of the world to former colonial powers (e.g., West Africa and North Africa to France), and the separation of the Muslim Middle East and the Chinese-speaking nations of East and Southeast Asia from other calling communities suggest the importance of continuing historic and cultural influences on information flows.  相似文献   
118.
基于水流阻力与图论的河网连通性评价   总被引:6,自引:0,他引:6       下载免费PDF全文
河网连通是区域防洪、供水和生态安全的重要基础。基于图论将河网概化为图模型,考虑不同类型河道输水能力差异,以河道水流阻力倒数表征水流通畅度,并以河道水流通畅度为权值,借助ArcGIS平台建立河网图模型加权邻接矩阵,再利用MATLAB工具进行顶点水流通畅度计算和河网连通度分析,从而实现对河网连通性的定量化分析。以太湖流域嘉兴平原河网为例,进行河道疏浚前后的河网连通程度定量评价,结果表明河道疏浚后河网连通度明显增加。  相似文献   
119.
基于离散裂隙网络模型的裂隙水渗流计算   总被引:1,自引:1,他引:0  
离散裂隙网络模型(Discrete Fracture Network(DFN))是研究裂隙水渗流最为有效的手段之一。文章根据裂隙几何参数和水力参数的统计分布,利用Monte Carlo随机模拟技术生成二维裂隙网络,基于图论无向图的邻接矩阵判断裂隙网络的连通,利用递归算法提取出裂隙网络的主干网或优势流路径。基于立方定律和渗流连续性方程,利用数值解析法建立了二维裂隙网络渗流模型,分析不同边界条件下裂隙网络中的流体流动。结果表明,该方法可以模拟区域宏观水力梯度和边界条件下,裂隙网络水力梯度方向总的流量,以及节点的水位、节点间的流量和流动方向的变化特征,为区域岩溶裂隙水渗流计算提供了一种实用、可行的方法。   相似文献   
120.
干旱区绿洲扩展过程中的景观变化分析   总被引:1,自引:0,他引:1  
常学礼  韩艳  孙小艳  张宁 《中国沙漠》2012,32(3):857-862
绿洲化过程中的景观变化和尺度效应是景观生态学研究的热点之一。针对这一目标以黑河中游张掖绿洲为研究区域,应用“3S”技术的缓冲分析方法,以绿洲标志景观类型农田、林地和湿地为核心,确定了不同时期绿洲范围并划分了老绿洲区和新增绿洲区。在此基础上,从景观组成动态和斑块连通度的尺度依赖特征两个方面分析了绿洲化过程中的景观变化机制和尺度效应。研究结果表明,绿洲化过程是以农田和建设用地斑块动态为主要特点。主要表现为:在不同的分区中,农田斑块以总面积和最大斑块指数增加为特点,说明农田斑块趋向集中连片分布;建设用地斑块总面积、斑块密度和最大斑块指数等3个指标都为增加,在景观上呈星点状扩张分布。老绿洲与新增绿洲的比较分析显示,新增绿洲的建设用地面积增加速率小于老绿洲,而农田面积的增加速率大于老绿洲。从景观斑块连通度的尺度依赖特点来看,在老绿洲中景观斑块类型的空间尺度依赖规律明显,但在时间尺度上的变化不显著;在新增绿洲内,林地、水域和建设用地的尺度依赖性比老绿洲高,其中林地、建设用地的空间变化规律明显,在时间尺度上无明显的差异;而水域斑块的尺度依赖性1985年高于2006年。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号