首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   7篇
  国内免费   35篇
大气科学   28篇
地球物理   37篇
地质学   40篇
海洋学   39篇
天文学   1篇
综合类   5篇
自然地理   13篇
  2024年   1篇
  2023年   1篇
  2022年   4篇
  2021年   6篇
  2020年   9篇
  2019年   6篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2015年   2篇
  2014年   9篇
  2013年   12篇
  2012年   2篇
  2011年   2篇
  2010年   6篇
  2009年   9篇
  2008年   8篇
  2007年   8篇
  2006年   5篇
  2005年   10篇
  2004年   7篇
  2003年   1篇
  2002年   5篇
  2001年   4篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1997年   7篇
  1996年   1篇
  1995年   4篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1980年   1篇
排序方式: 共有163条查询结果,搜索用时 15 毫秒
91.
The dispersion of pollutants from a point source is analytically investigated taking into consideration the vertical variation of both wind speed and eddy diffusivity. The deposition of the diffusing particles on the ground is taken into account throughout the boundary conditions. The concentration of pollutants under different atmospheric stabilities was found assuming that the vertical diffusion is limited by an elevated inversion layer. The decay distance of a pollutant along the wind direction for different atmospheric stabilities was derived. The resulting analytical formulae have been applied on a case study namely, the emission from the research reactor at Inshas. The results are discussed and presented in illustrative figures.  相似文献   
92.
黄土高原典型塬区土壤热性质变化特征研究   总被引:1,自引:0,他引:1  
马欣  张堂堂  陈金雷 《高原气象》2019,38(3):507-517
利用2014年7月至2015年1月黄土高原地区土壤含水量和土壤热性质观测资料,分析了该区域土壤热性质及其变化特征,并讨论了降水对土壤热性质的影响,结果显示:(1)除10 cm外,各层土壤热扩散率整体上呈现夏季下降,秋季平稳,冬季上升三个阶段,土壤体积比热容和土壤导热率表现为夏季上升,秋季平稳,冬季下降的趋势;100 cm处的土壤热扩散率始终高于40 cm,土壤热扩散率不随土壤深度增加而线性增加。(2)5 cm与10 cm层的土壤热性质均有明显日变化特征,且振幅较大,40 cm与100 cm处的日变化振幅逐渐变小。由于10 cm层土壤含水量的波动最大,该层的土壤热性质变化波动也最大。(3)土壤温度与土壤热扩散率随降水增加而下降,土壤热扩散率下降主要是土壤含水量较高时,土壤导热率与土壤体积比热容变化的幅度不一致所致;土壤体积比热容与土壤导热率随降水量增加而上升,降水主要通过土壤含水量的变化影响土壤热性质。  相似文献   
93.
The diffusion and adsorption of two common volatile organic compounds, i. e., methanol and benzene, in different zeolite pellets were studied experimentally by using the single pellet moment technique. The experiments were conducted in a one‐sided single pellet adsorption cell at different temperatures in the range between 303 and 343 K. The results showed that both volatile organic tracers were adsorbed reversibly onto all zeolite samples. The overall adsorption equilibrium constants of both volatile organic compounds decreased with increasing temperature. The adsorption of the tracers onto the zeolite samples were found to increase in the order of NaY > clinoptilolite > 4A. In the range between 303 and 343 K, the adsorption constants of benzene range from 10.51 to 5.52 for zeolite 4A, from 11.90 to 6.37 for clinoptilolite and from 20.32 to 9.82 for NaY. The adsorption constants of methanol range from 19.05 to 8.26 for zeolite 4A, from 38.40 to 9.12 for clinoptilolite and from 74.21 to 14.70 for NaY at temperatures between 303 and 333 K. The effective diffusivities for benzene varied from 2.20·10–6 to 13.01·10–6 m2/s, whereas for methanol, they varied from 9.80·10–6 to 15.60·10–6 m2/s at the temperatures studied.  相似文献   
94.
Vertical turbulent diffusivity (Kz), which can be estimated from water temperature, is a key factor in the evolution of water quality in lentic waters. In this study, we analysed the capability of a three-dimensional hydrodynamic model (EFDC) to capture water temperature and vertical diffusivity in Lake Arendsee in the Northern German plain. Of particular interest to us is to evaluate the model performance for capturing the diffusion minimum within the metalimnion and analyse the response of the metalimnetic Kz to meteorological forcing, namely changing wind speed and warming. The comparison confirmed that the calibrated model could reproduce both stratification dynamics and vertical diffusion profiles in the lake. The model was also shown to be able to capture the duration and vertical extent of the metalimnetic diffusion minimum. The scenario results illustrate that, compared to air temperature, wind velocity appeared to be the more influential meteorological variable on the vertical exchange within the metalimnion. While increasing wind velocities mostly affected the minimum values of Kz in the metalimnion and thus led to intensified vertical exchange, the reduction of wind velocity mostly affected the depth of minimal Kz, but not its absolute value.  相似文献   
95.
Particles on soil-mantled hillslopes are subject to downslope transport by erosion processes and vertical mixing by bioturbation. Both are key processes for understanding landscape evolution and soil formation, and affect the functioning of the critical zone. We show here how the depth–age information, derived from feldspar-based single grain post-infrared infrared stimulated luminescence (pIRIR), can be used to simultaneously quantify erosion and bioturbation processes along a hillslope. In this study, we propose, for the first time, an analytical solution for the diffusion–advection equation to calculate the diffusivity constant and erosion–deposition rates. We have fitted this model to age–depth data derived from 15 soil samples from four soil profiles along a catena located under natural grassland in the Santa Clotilde Critical Zone Observatory, in the south of Spain. A global sensitivity analysis was used to assess the relative importance of each model parameter in the output. Finally, the posterior probability density functions were calculated to evaluate the uncertainty in the model parameter estimates. The results show that the diffusivity constant at the surface varies from 11.4 to 81.9 mm2 a-1 for the hilltop and hill-base profile, respectively, and between 7.4 and 64.8 mm2 a-1 at 50 cm depth. The uncertainty in the estimation of the erosion–deposition rates was found to be too high to make a reliable estimate, probably because erosion–deposition processes are much slower than bioturbation processes in this environment. This is confirmed by a global sensitivity analysis that shows how the most important parameters controlling the age–depth structure in this environment are the diffusivity constant and regolith depth. Finally, we have found a good agreement between the soil reworking rates proposed by earlier studies, considering only particle age and depth, and the estimated diffusivity constants. The soil reworking rates are effective rates, corrected for the proportion of particles actually participating in the process. © 2019 John Wiley & Sons, Ltd.  相似文献   
96.
Determination of hydraulic diffusivity of aquifers by spectral analysis   总被引:1,自引:1,他引:0  
This study uses the cyclical frequency to develop the mathematical relationship between hydraulic diffusivity and spectral density functions calculated from groundwater level variation. Such relationship can be applied to (1) unsteady state, one-dimensional confined aquifer with time-dependent water level on both end boundaries, and (2) linearized unconfined aquifer with or without vertical recharge. The spectral density functions of groundwater fluctuations are largely affected by the spectral density functions obtained from time-dependent end boundaries and their cross-spectral density functions. Hydraulic diffusivity of an aquifer can be solved by type-curve matching technique at a specified frequency band under the conditions of (1) confined aquifer having equal time-dependent boundaries on both ends, (2) unconfined aquifer having equal time-dependent boundaries on both ends with surface recharge, and (3) unconfined aquifer subjected to surface recharge but neglecting the water table fluctuations on both end boundaries.  相似文献   
97.
Measurements on thermal conductivity and diffusivity as functions of temperature (up to 1150 K) and pressure (up to 1000 MPa) are presented for Archaean and Proterozoic mafic high-grade rocks metamorphosed in middle and lower crustal pressures, and situated in eastern Finland, central Fennoscandian Shield. Decrease of 12–20% in conductivity and 40–55% in diffusivity was recorded between room temperature and 1150 K, which can be considered as typical of phonon conductivity. Radiative heat transfer effects were not detected in these samples. Pressure dependencies of the samples are weak if compared to crystalline rocks in general, but relatively typical for mafic rocks.The temperature and pressure dependencies of thermal transport properties (data from literature and the present study) were applied in an uncertainty analysis of lithospheric conductive thermal modellings with random (Monte Carlo) simulations using a 4-layer model representative of shield lithosphere. Model parameters were varied according to predetermined probability functions and standard deviations were calculated for lithospheric temperature and heat flow density after 1500 independent simulations. The results suggest that the variations (uncertainties) in calculated temperature and heat flow density values due to variations in the temperature and pressure dependencies of conductivity are minor in comparison to the effects produced by typical variations in the room temperature value of conductivity, heat production rate or lower boundary condition values.  相似文献   
98.
南海北部中深层细结构混合研究   总被引:1,自引:0,他引:1  
基于2007年8月获得的ADCP(声学多普勒流速剖面仪)海流资料和CTD(温盐深剖面仪)水文资料,应用Gregg模型对南海中深层内波尺度的混合进行估计,同时应用Thorpe尺度对中深层存在的垂向翻转及由此引起的混合进一步分析。两种方法均显示,吕宋海峡附近上层400m的耗散率及混合率均强于18°N断面,中深层两个区域的混合率并没有显著区别。这表明吕宋海峡上层400m,可能存在更活跃的内波活动,从而产生更强的内波混合和垂向水团翻转。Gregg模型估计的耗散率和混合率量级分别为10^-9W·kg^-1和10^-6m^2·s^-1。大部分CTD站位在中深层均存在垂向翻转,而且保持较高的发生率,翻转所对应的混合率并不随深度增加而减小。以上南海北部的细结构混合特征增强对南海中深层混合的认识。  相似文献   
99.
The thermal diffusivity is the key parameter that controls near‐surface temperature where periodic temperature variation is progressively attenuated and delayed with depth. This article presents the results of apparent thermal diffusivity using temperatures recorded by a bedrock temperature measurement network in the fault zones of western Sichuan. High sensitivity temperature sensors (10?4 K) were installed at a maximum depth reaching 30 m. The apparent thermal diffusivities were deduced from both amplitude damping and phase shifting of annual temperature variations between two different depths. Under pure conduction, the thermal diffusivity determined through the phase method (αΦ) should be equivalent to that determined through the amplitude method (αA), whereas effects of the upward (downward) water flow are evidently reflected in the amplitude decay to make αΦ larger (lesser) than αA. The discrepancy between αΦ and αA can thus be a tracer of water movement or convective heat transfer. The calculated αΦ of the measurement stations varies from 1.22 × 10?6 to 3.00 × 10?6 m2/s, and the estimated αA ranges from 0.93 × 10?6 to 2.41 × 10?6 m2/s. Two regimes of heat transfer underground were suggested from the results. Conductive heat transport prevails over the nonconductive processes at five stations, which is characterized by αΦ coincident with αA for the same depth pair. On the contrary, the values of αΦ differ from αA at six stations in the intersection area of the Y‐shaped fault system, implying that convective heat transfer also plays a comparably important role. This finding is consistent with the hot springs distribution of the area. The results also indicate that water moves upward with an average Darcy velocity of approximately ?1 × 10?7 m/s in this region. Our research provides new evidence for the hydrothermal activity in the fault zones at the eastern margin of the Tibetan Plateau.  相似文献   
100.
Thermal diffusivity (D) was measured using laser-flash analysis (LFA) from oriented single-crystal albite and glasses near LiAlSi3O8, NaAlSi3O8, CaAl2Si2O8, LiAlSi2O6 and CaMgSi2O6 compositions. Viscosity measurements of the supercooled liquids, over 2.6 × 108 to 8.9 × 1012 Pa s, confirm strongly non-Arrhenian behavior for CaAl2Si2O8, and CaMgSi2O6, and near-Arrhenian behavior for the others. As T increases, D glass decreases, approaching a constant near 1,000 K. Upon crossing the glass transition, D decreases rapidly. For feldspars, D for the melt is ~15% below D of the bulk crystal, whereas for pyroxenes, this difference is ~40%. Thermal conductivity (k lat = ρC P D) of crystals decreases with increasing T, but k lat of glasses increases with T because heat capacity (C P ) increases with T more strongly than density (ρ) and D decrease. For feldspars, k lat for the melt is ~10% below that of the bulk crystal or glass, whereas this decrease for pyroxene is ~50%. Therefore, melting substantially impedes heat transport, providing positive thermal feedback that could promote further melting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号