首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3759篇
  免费   487篇
  国内免费   354篇
测绘学   90篇
大气科学   105篇
地球物理   1653篇
地质学   906篇
海洋学   488篇
天文学   326篇
综合类   102篇
自然地理   930篇
  2024年   17篇
  2023年   24篇
  2022年   59篇
  2021年   127篇
  2020年   158篇
  2019年   157篇
  2018年   128篇
  2017年   139篇
  2016年   124篇
  2015年   152篇
  2014年   155篇
  2013年   246篇
  2012年   120篇
  2011年   174篇
  2010年   132篇
  2009年   220篇
  2008年   223篇
  2007年   223篇
  2006年   249篇
  2005年   222篇
  2004年   190篇
  2003年   174篇
  2002年   144篇
  2001年   159篇
  2000年   150篇
  1999年   153篇
  1998年   142篇
  1997年   88篇
  1996年   56篇
  1995年   42篇
  1994年   54篇
  1993年   27篇
  1992年   24篇
  1991年   22篇
  1990年   14篇
  1989年   18篇
  1988年   11篇
  1987年   19篇
  1986年   10篇
  1985年   7篇
  1984年   11篇
  1983年   7篇
  1982年   9篇
  1981年   7篇
  1980年   6篇
  1979年   3篇
  1978年   1篇
  1977年   3篇
排序方式: 共有4600条查询结果,搜索用时 78 毫秒
101.
Erosion rates surveyed using 230 erosion pins on 24 occasions over eight years (1994–2001) on forested stream banks, tributaries and forest ditches in the 0·89 km2 Nant Tanllwyth catchment, part of the Hafren Forest on Plynlimon, mid‐Wales, showed statistically significant increases of up to 40 mm a?1 in mean erosion rates during the two‐year period in which environmentally sensitive plot‐scale timber harvesting operations took place (1996–97). In the four years following timber harvesting mean erosion rates at all sites recovered to levels that were lower than before the harvesting operations began. This is attributed to increased light levels, following canopy removal, allowing vegetation to colonize exposed banks. There was a statistically significant relationship (p < 0·05) between mean erosion rate in 2000–01 (four years after harvesting) and percentage vegetation cover at erosion monitoring sites in the clearfelled (south tributaries) area though the same relationship did not hold for sites on the mainstream banks or for sites on the north (mature forest) ditch sites. The implications of natural vegetation colonization for management of such streams are discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
102.
A general trend of decreasing soil loss rates with increasing vegetation cover fraction is widely accepted. Field observations and experimental work, however, show that the form of the cover‐erosion function can vary considerably, in particular for low cover conditions that prevail on arid and semiarid hillslopes. In this paper the structured spatial distribution of the vegetation cover and associated soil attributes is proposed as one of the possible causes of variation in cover–erosion relationships, in particular in dryland environments where patchy vegetation covers are common. A simulation approach was used to test the hypothesis that hillslope discharge and soil loss could be affected by variation in the spatial correlation structure of coupled vegetation cover and soil patterns alone. The Limburg Soil Erosion Model (LISEM) was parameterized and verified for a small catchment with discontinuous vegetation cover at Rambla Honda, SE Spain. Using the same parameter sets LISEM was subsequently used to simulate water and sediment fluxes on 1 ha hypothetical hillslopes with simulated spatial distributions of vegetation and soil parameters. Storms of constant rainfall intensity in the range of 30–70 mm h?1 and 10–30 min duration were applied. To quantify the effect of the spatial correlation structure of the vegetation and soil patterns, predicted discharge and soil loss rates from hillslopes with spatially structured distributions of vegetation and soil parameters were compared with those from hillslopes with spatially uniform distributions. The results showed that the spatial organization of bare and vegetated surfaces alone can have a substantial impact on predicted storm discharge and erosion. In general, water and sediment yields from hillslopes with spatially structured distributions of vegetation and soil parameters were greater than from identical hillslopes with spatially uniform distributions. Within a storm the effect of spatially structured vegetation and soil patterns was observed to be highly dynamic, and to depend on rainfall intensity and slope gradient. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
103.
Hundreds of gullies (‘voçorocas’) of huge dimensions (up to 400–500 m long, 150 m wide and 50 m deep) are very common in the small Maracujá Catchment in southeastern Brazil. These erosional features, which occur with an uneven intensity throughout the area, started due to bad soil management practices at the beginning of European settlement, at the end of the 17th century, and nowadays are still evolving, but at a slower rate. As surface soils are usually very resistant to erosion, the outcrop of the more erodible basement saprolites seems to be an essential condition for their beginning. An analysis of well known erosion controlling factors was performed, aiming to explain the beginning and evolution of these gullies and to understand the reasons for their spatial distribution. Data shows that geology and, mainly, geomorphology are the main controlling factors, since gullies tend to be concentrated in basement rock areas with lower relief (domain 2) of Maracujá Catchment, mainly at the fringes of broad and flat interfluves. At the detailed scale (1:10 000), gullies are more common in amphitheatre‐like headwater hollows that frequently represent upper Quaternary gullies (paleogullies), which demonstrate the recurrence of channel erosion. So, gullies occur in areas of thicker saprolites (domain 2), in places with a natural concentration of surface and underground water (hollows). Saprolites of the preserved, non‐eroded hollows are usually pressurized (confined aquifer) due to a thick seal of Quaternary clay layer, in a similar configuration to the ones found in hollows of mass movement (mudflow) sites in southeastern Brazil. Therefore, the erosion of the resistant soils by human activities, such as road cuts and trenches (‘valos’), or their mobilization by mudflow movements, seem to be likely mechanisms of gullying initiation. Afterwards, gullies evolve by a combination of surface and underground processes, such as wash and tunnel erosion and falls and slumps of gully walls. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
104.
This article introduces the SVG (salt‐velocity gauge), a novel automated technique for measuring flow velocity by means of salt tracing. SVG allows a high measuring rate (up to one every 2 seconds), short control section length (down to 10 cm), high accuracy (+[sol ]?1·5 cm s?1), and unbiased calculation of the mean velocity in experimental conditions with turbulent, supercritical flow. A few cubic centimetres of saturated salt solution (NaCl) are injected into the flow at regular time intervals using a programmable solenoid valve. The tracer successively passes two conductivity probes placed a short distance downstream. The transformation of the signal between the two probes is modelled as a one‐dimensional diffusion wave equation. Model calibration gives an estimation of the mean velocity and the diffusion for each salt plume. Two implementations of the SVG technique are described. The first was an outdoors simulated rainfall experiment in Senegal (conductivity probes at 40 cm apart, 8 Hz measurement rate, salt injections at 10 second intervals). Mean velocity was estimated to range between 0·1 and 0·3 m s?1. The second was a laboratory‐based flume experiment (conductivity probes at 10 cm apart, 32 Hz, salt injections at 2 second intervals). Another SVG with probes at 34 cm apart was used for comparison. An acoustic Doppler velocimeter (ADV) was also used to give an independent assessment of velocity. Using the 10 cm salt gauge, estimated mean velocity ranged from 0·6 to 0·9 m s?1 with a standard deviation of 1·5 cm s?1. Comparisons between ADV, 10 cm SVG and 34 cm SVG were consistent and demonstrated that the salt‐tracing results were unbiased and independent of distance between probes. Most peaks were modelled with r2 > 90 per cent. The SVG technology offers an alternative to the dye‐tracing technique, which has been severely criticized in the literature because of the wide interval of recommended values for the correction factor α to be applied to the timings. This article demonstrates that a fixed value of α is inappropriate, since the correction factor varies with velocity, diffusion and the length of the control section. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
105.
A model to simulate channel changes in ephemeral river channels and to test the effects of hydrological changes due to climate change and[sol ]or land use change was developed under the auspices of the EU funded MEDALUS programme (Mediterranean Desertification and Land Use). The model, CHANGISM (Channel Change GIS Simulation Model), is designed to simulate the effect of channel flow events and of climate conditions on morphology, sediment and vegetation, through sequences of events and conditions, over periods of up to several decades. The modelling is based on cellular automata but with calculations for water and sediment continuity. Process rules have both deterministic and stochastic elements. An important feature of the model is that it incorporates feedback elements between each event. The main aim of the model is to indicate the likely outcomes of events and combinations of conditions. It is linked to GIS for both input and output. The modelling is based on a channel reach and state is input as GIS layers of morphology (DEM), sediment and vegetation cover and state. Other initial conditions of soil moisture, groundwater level, and overall gradient are input. Parameters for processes are read from tables and can be easily changed for successive runs of the model. The bases for decisions on process specifications are discussed in this paper. Initial tests of the operation and sensitivity of the model were made on idealized reaches. The model was then tested using data from monitored sites in SE Spain. Simulations using clearwater flow worked well but initial simulations using events with sediment loads showed some tendency for excess deposition. Further tests and modifications are taking place. Overall, the model is one of the most sophisticated that simulates the interaction of flows with sediment and vegetation and the outcomes in terms of erosion, deposition, morphology, sediment cover, vegetation cover and plant survival over periods of up to 30 years for the scale of a channel reach. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
106.
Storage of large woody debris in the wide, mountain, Czarny Dunajec River, southern Poland, was investigated following two floods of June and July 2001 with a seven‐year frequency. Within a reach, to which wood was delivered only by bank erosion and transport from upstream, wood quantities were estimated for eighty‐nine, 100 m long, channel segments grouped into nine sections of similar morphology. Results from regression analysis indicated the quantity of stored wood to be directly related to the length of eroded, wooded banks and river width, and inversely related to unit stream power at the flood peak. The largest quantities of wood (up to 33 t ha?1) were stored in wide, multi‐thread river sections. Here, the relatively low transporting ability of the river facilitated deposition of transported wood while a considerable length of eroded channel and island banks resulted in a large number of trees delivered from the local riparian forest. In these sections, a few morphological and ecological situations led to the accumulation of especially large quantities of wood within a small river area. Very low amounts of wood were stored in narrow, single‐thread sections of regulated or bedrock channel. High stream power facilitated transport of wood through these sections while the high strength of the banks and low channel sinuosity prevented bank retreat and delivery of trees to the channel. Considerable differences in the character of deposited wood existed between wide, multi‐thread channel sections located at different distances below a narrow, 7 km long, channellized reach of the river. Wood deposited close to the downstream end of the channellized reach was highly disintegrated and structured into jams, whereas further downstream well preserved shrubs and trees prevailed. This apparently reflects differences in the distance of wood transport and shows that in a mountain river wider than the height of trees growing on its banks, wood can be transported long distances along relatively narrow, single‐thread reaches but is preferentially deposited in wide, multi‐thread reaches. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
107.
108.
In the study of soil erosion, specifically on detachment of soil particles by raindrop impact, kinetic energy is a commonly suggested indicator of the raindrop's ability to detach soil particles from the soil mass. Since direct measurement of kinetic energy requires sophisticated and costly instruments, the alternative approach is to estimate it from rainfall intensity. The present study aims at establishing a relationship between rainfall intensity and kinetic energy for rainfalls in Central Cebu, Philippines as a preface of a wider regional investigation.

Drop size distributions of rainfalls were measured using the disdrometer RD-80. There are two forms of kinetic energy considered here. One is kinetic energy per unit area per unit time (KER, J m−2 h−1) and the other is kinetic energy per unit area per unit depth (KE, J m−2 mm−1). Relationships between kinetic energy per unit area per unit time (KER) and rainfall intensity (I) were obtained using linear and power relations. The exponential model and the logarithmic model were fitted to the KE–I data to obtain corresponding relationships between kinetic energy per unit area per unit depth of rainfall (KE) and rainfall intensity (I). The equation obtained from the exponential model produced smaller standard error of estimates than the logarithmic model.  相似文献   

109.
The Boao coastal system along the eastern coast of Hainan Island is a dynamic delta-tidal inlet-barrier formed during the late Holocene. The delta developed inside a shallow lagoon barred by a sandy barrier with a narrow, shallow tidal inlet opening. Two major distributary channels separated by small islands characterize the delta. The lagoon is silting up receiving and trapping sediments from both the river and, in minor measure during storms, through the tidal inlet opening and barrier washovers. The barrier at the tidal inlet is highly dynamic and changes its form, accreting (migrating spit) against the inlet during fair-weather conditions and being eroded during storms and river floods.The delta has almost completely filled the lagoon and major concerns exist on the effect that ongoing large development plans may have on the environment. These concerns include the effect on floods and rate of siltation once banks of the islands have been stabilized and floodwater and sediment load are impeded from spreading over the lowlands, and the effect of increasing pollutant loads from the new facilities on the ecosystems of the increasingly restricting lagoon water and on the seashores.  相似文献   
110.
ABSTRACT. The retreat of Nigardsbreen, an outlet glacier from the ice-cap Jostedalsbreen in south-central Norway, from its largest extent during the Little Ice Age, uncovered a proglacial lake during 1936–1967. This lake, Nigardsvatn, has been studied since 1968 in order to obtain data on solid material carried by the meltwater stream from the glacier, both in suspension and as bottom load. Between 70 and 85% of the suspended sediment has been deposited on the lake bottom, forming annual varves. The coarse material has been deposited in a delta, the formation of which started in 1968. Its growth, and hence the volume of total annual bottom load, has been surveyed annually for the past 36 years. In 1969 the entire bottom load was collected by building a fence-like net across the river. Material >3 cm was caught by this net, and formed approximately half the amount of suspended sediment transport during the same three-week period. Annual average deposition on the delta was 11800×103 kg for the period 1968–2003. This is almost the same amount as carried in suspension from the glacier on an annual mean basis for the 36-year period. If conditions remain constant, the lake will be completely filled in about 500 years. The glacier erosion is calculated to be 0.3 mm/a.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号