首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   12篇
  国内免费   15篇
地球物理   32篇
地质学   54篇
海洋学   5篇
综合类   1篇
自然地理   10篇
  2024年   1篇
  2022年   2篇
  2021年   2篇
  2020年   5篇
  2019年   1篇
  2018年   8篇
  2017年   5篇
  2016年   1篇
  2015年   1篇
  2014年   7篇
  2013年   5篇
  2012年   7篇
  2011年   2篇
  2010年   5篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2006年   8篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   4篇
  1998年   8篇
  1997年   2篇
  1995年   1篇
  1994年   3篇
排序方式: 共有102条查询结果,搜索用时 15 毫秒
61.
物源分析是古地理重建与盆地分析的关键,典型的物源区包括岩浆弧、大陆地块、再旋回造山带等。重矿物种类多样,蕴含丰富的母岩信息,是物源分析的重要对象。现代砂的研究表明,不同大地构造背景下形成的沉积物具有不同的重矿物组合。遗憾的是,由于古代沉积的重矿物组合在成岩过程中会被改造,现代砂的重矿物组合与物源区的耦合规律并不能直接应用于古代砂岩。科学界尚不清楚岩浆弧与大陆地块来源的古代砂岩的重矿物特征。西藏日喀则弧前盆地与特提斯喜马拉雅侏罗纪—古近纪砂岩物源明确,要么来自亚洲大陆的冈底斯弧,要么来自印度大陆地块,是探讨岩浆弧与大陆地块来源的古代砂岩重矿物特征的绝佳场所。16件砂岩重矿物定量分析结果表明,两个物源区来源的砂岩重矿物组合均被成岩作用严重改造,辉石、角闪石等不稳定矿物消失,绿帘石等自生矿物出现;冈底斯弧来源的砂岩以出现大量绿帘石或磷灰石为特征,ZTR指数小于40;印度大陆地块来源的砂岩以出现大量锆石、电气石和金红石为特征,ZTR指数大于75。这一结果指示岩浆弧与大陆地块来源的砂岩的重矿物组合具有明显差异性,可以用来探讨物源的大地构造背景。  相似文献   
62.
南海北部陆缘东部中生代沉积的地震反射特征   总被引:14,自引:3,他引:14  
本文介绍了中美合作在南海北部陆缘进行的双船地震(合成排列剖面)工作,讨论了新生代沉积之下的中生代沉积之地震反射特征,在今日陆架新生代沉积之下的中生代沉积之地震反射表现杂乱,低振幅和不连续特性,而在今日上陆坡新生代沉积之下的中生代沉积之地震反射呈现连续,较强振幅和可和距离对比的特征。根据地球物理特征及区域地质资料,我们指出燕山运动时间广东大陆边缘的构造格架:今日东沙群岛-彭湖列岛一带火山弧,今日陆架  相似文献   
63.
Most serpentinitized peridotite in orogenic belts is derived from oceanic lithosphere, but the emplacement mechanisms of these rocks vary greatly, as illustrated by the nature of these rock bodies and their contacts. The diverse emplacement mechanisms have important implications for connecting ophiolitic rock occurrences to large‐scale orogenic processes. In the California Cordillera, the largest bodies of ultramafic rocks are parts of ophiolite sheets, such as the Coast Range ophiolite (CRO), that were part of the upper plate of an oceanic subduction system. Such units differ from smaller bodies within subduction complexes such as the Franciscan Complex that were transferred from the subducting plate to the subduction complex during accretion. Some intra‐subduction complex ultramafic rocks occur as nearly block‐free sheets within the Franciscan Complex, and as a part of mafic–ultramafic imbricates or broken formations within the Shoo Fly Complex of the northern Sierra Nevada. Franciscan Complex serpentinite also occurs as sedimentary serpentinite mélange that was partly subducted after deposition in the trench via submarine sliding. Such mélanges include blocks that record older and higher grade metamorphism than the matrix. Sedimentary serpentinite mélange that includes high‐pressure metamorphic blocks is also found in the basal Great Valley Group forearc basin deposits depositionally overlie the CRO. Distinguishing the different serpentinite origins is difficult in the California Cordillera even though a terminal continental collision did not affect this orogenic belt. In more typical orogenic belts with greater post‐subduction disruption, distinction between the types of serpentinite occurrences presents a greater challenge.  相似文献   
64.
A mass‐transport deposit named MTD1 (up to 100 m in thickness) is intercalated in the upper Kiwada Formation, a Pleistocene forearc basin fill on the Boso Peninsula, east‐central Japan. The present study aims to examine the origin, age, and distribution of MTD1. MTD1 consists mainly of mudstone blocks containing thin very fine‐ to medium‐grained sandstones, and ranges from tens of centimeters to more than tens of meters in length and thickness. Correlation of marker tuff beds and application of the biostratigraphy of calcareous nannofossils suggest that the blocks in MTD1 were derived from the underlying strata. The total thickness of the stratified blocks from the different stratigraphic horizons exceeds 60 m, implying that MTD1 originated from deeply‐excavated slope failure. The slope failure occurred in a short time interval at ca 1.3 Ma. MTD1 provides an estimate of the height of the escarpment on the basis of the stratigraphic origin of the blocks.  相似文献   
65.
The Solonker Suture Zone is thought to record the terminal evolution of the Central Asian Orogenic Belt (CAOB) in Inner Mongolia. However, two contrasting interpretations of the timing of suturing of the Solonker Suture Zone exist: (i) Permian to Early Triassic; and (ii) Middle Devonian or Late Devonian to Carboniferous. The Shuangjing Schist is exposed in the Linxi area along the Xar Moron Fault Zone, which marks the southern boundary of the Solonker Suture Zone in the eastern section of the CAOB, and thus provides insight into the timing of suturing of the Solonker Suture Zone. Detailed and systematic analysis of the petrology and geochemistry of the Shuangjing Schist shows that the Shuangjing Schist developed by greenschist facies prograde metamorphism of a volcanisedimentary rock series protolith. The volcanic parts of the Shuangjing Schist are a calc‐alkaline series with large volumes of intermediate members and subordinate acidic members. Volcanism occurred in a magmatic arc on the continental margin and was induced by subduction‐related magmatism resulting from mantle metasomatism. The sedimentary parts of the Shuangjing Schist reflect a transition from continental shelf to abyssal plain sedimentation. The formation of the Shuangjing Schist is suggested to be related to closure of an arc/forearc‐related ocean basin. The timing is constrained by a laser ablation inductively coupled plasma–mass spectrometry (LA‐ICP–MS) U–Pb magmatic zircon age of 298 ± 2 Ma from a carbonaceous biotite–plagioclase schist that was intruded by granite at 272 ± 2 Ma. In the Linxi area, southward subduction of the arc/forearc basin led to uplift, thickening, collapse, and erosion of the overriding continental crust. Collapse induced extension and widespread magmatism along the volcanic arc at the northern margin of the North China Craton. The closure of the arc/forearc‐related oceanic basin led to the formation of Late Permian to Middle Triassic collisional granites and the subsequent end of the collision of the Solonker Suture Zone.  相似文献   
66.
邵坤  赵朝辉  刘卫 《岩矿测试》2014,33(1):29-33
高纯硝酸银中痕量杂质元素的存在会影响其性能和质量,为提高现代测试技术分析痕量杂质元素的准确度,需要解决的首要问题是通过加入沉淀剂或还原剂将银除去,克服基体元素的基体效应。本文提出采用10 mL 10 g/L柠檬酸-5 g/L乙醇酸作络合保护剂,12 mL 100 g/L氯化铵作沉淀剂,建立了沉淀基体分离-电感耦合等离子体质谱同时测定高纯硝酸银中15种痕量杂质元素的分析方法。探讨了络合剂和沉淀剂浓度及用量、质谱干扰及同位素选择、非质谱干扰及内标选择、实验空白值等因素对测定结果的影响。在最佳的实验条件下,Cu、Pb、Ni、Mn、Au、Pd、Pt、Rh、Ru、Ir元素在0~100 ng/mL,Fe、Hg、Bi、Cr、Sn元素在0~250ng/mL浓度范围内呈良好的线性关系。方法检出限(3σ)为0.005~0.062 ng/g,方法精密度(RSD,n=11)为0.6%~2.6%,加标回收率为94.1%~103.1%。与现行的分析方法相比,本方法采用的络合剂和沉淀剂能将基体元素与杂质元素完全分离而不影响测定结果;实验流程简单快速,检出限低,准确度和精密度均满足了实际样品的分析要求。  相似文献   
67.
Sedimentary geochemistry of fine-grained strata of the Great Valley Group (GVG) in California documents a provenance signal that may better represent unstable, mafic minerals and volcanic clasts within sediment source regions than the provenance signal documented in the petrofacies and detrital zircon analysis of coarser sedimentary fractions. Geochemistry of the GVG provides an overall provenance framework within which to interpret sandstone petrofacies and detrital zircon age signatures. The geochemical signature for all Sacramento Valley samples records an overall continental arc source, with significant variation but no clear spatial or temporal trends, indicating that the geochemical provenance signal remained relatively consistent and homogenized through deposition of Sacramento basin strata. The San Joaquin basin records a distinct geochemical provenance signature that shifted from Early to Late Cretaceous time, with Lower Cretaceous strata recording the most mafic trace element geochemical signature of any GVG samples, and Upper Cretaceous strata recording the most felsic geochemical signature. These provenance results suggest that the early San Joaquin basin received sediment from the southern Sierran foothills terranes and intruding plutons during the Early Cretaceous, with sediment sources shifting east as the southern Sierran batholith was exhumed and more deeply eroded during the Late Cretaceous. The GVG provenance record does not require sediment sources inboard of the arc at any time during GVG deposition, and even earliest Cretaceous drainage systems may not have traversed the arc to link the continental interior with the margin. Because the GVG provenance signature is entirely compatible with sediment sources within the Klamath Mountains, the northern and western Sierran foothills belt, and the main Cretaceous Sierran batholith, the Klamath-Sierran magmatic arc may have formed a high-standing topographic barrier throughout the Cretaceous period.  相似文献   
68.
Abstract The Molucca Sea is a narrow basin located south of Mindanao (Philippines) and underlined by a north-south ophiolitic ridge. This ridge represents the outer ridge of the Sangihe subduction zone and emerges by uplift in the central part of the basin, in the Talaud Islands. Field studies indicate that forearc sediments rest uncomformably on (i) a dismembered ophiolitic series and (ii) thick melanges. Structural analysis indicates two deformation events, one of which is oriented east-west coaxial with the present state of strain. We interpret the earlier (N20°E) direction as a thrusting event that affected an ophiolitic basement associated with the edge of the Celebes Sea. Thrusting within the oceanic crust and sediments also generated olistostromes (melanges). The style of deformation is characterized by flattened rhombs of peridotites which exists in situ in the upper section of the crustal sequence and were also found inside the melange. Incipient Sangihe subduction around 15 Ma uplifted the deformed crust and buried the melanges beneath the forearc sediments. Recent east-west shortening during subduction of the Snellius Plateau reactivated the melanges within thrusts cutting the forearc series.  相似文献   
69.
Study on the Tectonic Setting for the Ophiolites in Xigaze, Tibet   总被引:4,自引:0,他引:4  
The Xigaze ophiolite is located in the middle section of the Yarlung Zangbo River ophiolite belt and includes a well-preserved sequence section of seven ophiolite blocks. The relatively complete ophiolitic sequence sections are represented by Jiding, Dejixiang, Baigang, and Dazhuqu ophiolites and consist of three–four units. The complete ophiolite sequence in order from the bottom to top consists of mantle peridotite, cumulates, sheeted sill dike swarms, and basic lavas±radiolarian chert. These cumulates are absent in the remaining blocks of Dejixiang and Luqu. The age of radiolaria in the radiolarian chert is Late Jurassic–Cretaceous. The basalt and ultramafic rock of the ophiolite also are overlaid by Tertiary Liuqu conglomerate, which contains numerous pebble components of ophiolite, indicating that the Tethys Ocean began to close at the end of Cretaceous Period. The isotopic data of gabbro, diabase, and albite granite in the Xigaze ophiolite are approximately 126–139 Ma, which indicates that the ophiolite formed in the Early Cretaceous. The K–Ar age of amphibole in garnet amphibolite in the ophiolite mélange is 81 Ma, indicating that tectonic ophiolite emplacement occurred at the end of Late Cretaceous.  相似文献   
70.
We present major and trace element data of lava recovered from the northern Yap Trench in the western Pacific and discuss their petrogenesis and tectonic implications within the framework of interactions between the Caroline Ridge and Yap Trench. Rocks were collected from both landward and seaward trench slopes and exhibited geochemical characteristics similar to backarc basin basalt (BABB) and mid-ocean ridge basalt (MORB), including high Fe content, tholeiitic affinity, high TiO2 value at a given FeOT/MgO ratio, Ti/V ratio between 20 and 50, low Ba/Nb ratio and Th/Nb ratio, and trace element patterns commonly displayed by BABB and MORB, which are distinct from arc lava. These rocks seem to have been generated during mantle upwelling and decompression melting at a spreading center. However, compared with typical forearc lava produced by seafloor spreading in the Mariana forearc region, such as the early Eocene forearc basalts and late Neogene forearc lava in the southernmost Mariana Trench, the Yap Trench lava is derived from a more fertile mantle and feature a more minor subduction component; thus, they cannot be the products of forearc mantle decompression melting. We suggest that the landward slope lava represents backarc basin crust that was overthrust onto the forearc lithosphere during the collision of the Caroline Ridge with the Yap Trench (20–25 Ma), which played a key role in the evolution of the Yap subduction system. Moreover, the seaward slope lava represents the subduction plate crust that accreted onto the deep trench during the collision. This collision event resulted in the cessation of Yap Arc magmatism; thus, the Yap Trench volcanic rocks (<25 Ma) previously suggested to be arc magma products may actually represent the nascent island arc lava with a lower subduction component than in the mature Mariana Arc lava.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号