首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   999篇
  免费   156篇
  国内免费   462篇
测绘学   1篇
地球物理   80篇
地质学   1481篇
海洋学   11篇
综合类   13篇
自然地理   31篇
  2024年   7篇
  2023年   27篇
  2022年   56篇
  2021年   63篇
  2020年   69篇
  2019年   93篇
  2018年   87篇
  2017年   87篇
  2016年   69篇
  2015年   69篇
  2014年   60篇
  2013年   154篇
  2012年   108篇
  2011年   49篇
  2010年   55篇
  2009年   55篇
  2008年   67篇
  2007年   50篇
  2006年   48篇
  2005年   40篇
  2004年   59篇
  2003年   39篇
  2002年   20篇
  2001年   21篇
  2000年   29篇
  1999年   16篇
  1998年   24篇
  1997年   25篇
  1996年   16篇
  1995年   7篇
  1994年   14篇
  1993年   13篇
  1992年   6篇
  1991年   4篇
  1990年   3篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有1617条查询结果,搜索用时 31 毫秒
91.
The Red River shear zone (RRSZ) is a major left‐lateral strike‐slip shear zone, containing a ductilely deformed metamorphic core bounded by brittle strike‐slip and normal faults, which stretches for >1000 km from Tibet through Yunnan and North Vietnam to the South China Sea. The RRSZ exposes four high‐grade metamorphic core complexes along its length. Various lithologies from the southernmost core complex, the Day Nui Con Voi (DNCV), North Vietnam, provide new constraints on the tectonic and metamorphic evolution of this region prior to and following the initial India–Asia collision. Analysis of a weakly deformed anatectic paragneiss using PT pseudosections constructed in the MnO–Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (MnNCKFMASHTO) system provides prograde, peak and retrograde metamorphic conditions, and in situ U–Th–Pb geochronology of metamorphic monazite yields texturally controlled age constraints. Tertiary metamorphism and deformation, overprinting earlier Triassic metamorphism associated with the Indosinian orogeny and possible Cretaceous metamorphism, are characterized by peak metamorphic conditions of ~805 °C and ~8.5 kbar between c. 38 and 34 Ma. Exhumation occurred along a steep retrograde P–T path with final melt crystallizing at the solidus at ≥~5.5 kbar at ~790 °C. Further exhumation at ~640–700 °C and ~4–5 kbar at c. 31 Ma occurred at subsolidus conditions. U–Pb geochronological analysis of monazite from a strongly deformed pre‐kinematic granite dyke from the flank of the DNCV provides further evidence for exhumation at this time. Magmatic grains suggest initial emplacement at 66.0 ± 1.0 Ma prior to the India–Asia collision, whereas grains with metamorphic characteristics indicate later growth at 30.6 ± 0.4 Ma. Monazite grains from a cross‐cutting post‐kinematic dyke within the core of the DNCV antiform provide a minimum age constraint of 25.2 ± 1.4 Ma for the termination of fabric development. A separate and significant episode of monazite growth at c. 83–69 Ma is suggested to be the result of fluid‐assisted recrystallization following the emplacement of magmatic units.  相似文献   
92.
SHRIMP (Sensitive High‐Resolution Ion MicroProbe) analytical procedures have been developed to enable dating of the small, early diagenetic xenotime overgrowths that commonly occur on zircons in siliciclastic sedimentary rocks. The method will be particularly useful in Precambrian terranes, where diagenetic xenotime dating could play a role equivalent to biostratigraphic dating in the Phanerozoic. Reliable 207Pb/206Pb data are more readily obtained than 206Pb/238U, which also favours application to the Precambrian. However, it is demonstrated that 206Pb/238U dating of larger overgrowths (>10 μm) is also viable and applicable to Phanerozoic samples. SHRIMP Pb/Pb geochronology of authigenic xenotime in an unmetamorphosed Palaeoproterozoic sandstone in the Kimberley Basin has constrained diagenesis to a precision of ± 7 Ma. In contrast, greenschist‐facies metasediments of the Archaean Witwatersrand Basin, South Africa, contain both authigenic and alteration xenotime that record a complex history of growth from early diagenesis to the last major thermal event to affect the basin.  相似文献   
93.
Interpreting tectonic histories from metamorphic tectonites requires an understanding of the linkages and feedbacks between deformation and metamorphism. Relationships between deformation and metamorphism can be divided into two broad groups: active and passive. Active relationships involve direct interactions whereby deformation directly influences metamorphic reactions or metamorphism directly affects the rate or style of deformation. One of the most important ‘active’ relationships is the role that deformation plays in helping to remove unstable reactant phases and to promote the growth of stable product phases. Passive relationships are correlations or linkages that allow the deformation history to be integrated with the metamorphic history. Compositional mapping of major and accessory phases and especially maps of larger thin section domains are particularly valuable for evaluating strain partitioning, scales of equilibrium, relationships between metamorphic textures and deformational fabrics, and in particular, for interpreting geochronological data. Petrological pseudosections are an increasingly utilized tool for interpreting microtextures and for linking deformation, metamorphism, and large‐scale tectonics. In situ geochronology and petrological analysis of chronometer phases (i.e. monazite, xenotime, titanite, allanite, etc.) are a critical part of tectonic analysis of metamorphic rocks. The electron microprobe plays an essential role in characterizing chronometer phases and placing them into the context of silicate fabrics and textures.  相似文献   
94.
Fifty‐five new SHRIMP U–Pb zircon ages from samples of northern Australian ‘basement’ and its overlying Proterozoic successions are used to refine and, in places, significantly change previous lithostratigraphic correlations. In conjunction with sequence‐stratigraphic studies, the 1800–1580 Ma rock record between Mt Isa and the Roper River is now classified into three superbasin phases—the Leichhardt, Calvert and Isa. These three major depositional episodes are separated by ~20 million years gaps. The Isa Superbasin can be further subdivided into seven supersequences each 10–15 million years in duration. Gaps in the geological record between these supersequences are variable; they approach several million years in basin‐margin positions, but are much smaller in the depocentres. Arguments based on field setting, petrography, zircon morphology, and U–Pb systematics are used to interpret these U–Pb zircon ages and in most cases to demonstrate that the ages obtained are depositional. In some instances, zircon crystals are reworked and give maximum depositional ages. These give useful provenance information as they fingerprint the source(s) of basin fill. Six new ‘Barramundi’ basement ages (around 1850 Ma) were obtained from crystalline units in the Murphy Inlier (Nicholson Granite and Cliffdale Volcanics), the Urapunga Tectonic Ridge (‘Mt Reid Volcanics’ and ‘Urapunga Granite’), and the central McArthur Basin (Scrutton Volcanics). New ages were also obtained from units assigned to the Calvert Superbasin (ca 1740–1690 Ma). SHRIMP results show that the Wollogorang Formation is not one continuous unit, but two different sequences, one deposited around 1730 Ma and a younger unit deposited around 1722 Ma. Further documentation is given of a regional 1725 Ma felsic event adjacent to the Murphy Inlier (Peters Creek Volcanics and Packsaddle Microgranite) and in the Carrara Range. A younger ca 1710 Ma felsic event is indicated in the southwestern McArthur Basin (Tanumbirini Rhyolite and overlying Nyanantu Formation). Four of the seven supersequences in the Isa Superbasin (ca 1670–1580 Ma) are reasonably well‐constrained by the new SHRIMP results: the Gun Supersequence (ca 1670–1655 Ma) by Paradise Creek Formation, Moondarra Siltstone, Breakaway Shale and Urquhart Shale ages grouped between 1668 and 1652 Ma; the Loretta Supersequence (ca 1655–1645 Ma) by results from the Lady Loretta Formation, Walford Dolomite, the upper part of the Mallapunyah Formation and the Tatoola Sandstone between ca 1653 and 1647 Ma; the River Supersequence (ca 1645–1630 Ma) by ages from the Teena Dolomite, Mt Les and Riversleigh Siltstones, and Barney Creek, Lynott, St Vidgeon and Nagi Formations clustering around 1640 Ma; and the Term Supersequence (ca 1630–1615 Ma) by ages from the Stretton Sandstone, lower Doomadgee Formation and lower part of the Lawn Hill Formation, mostly around 1630–1620 Ma. The next two younger supersequences are less well‐constrained geochronologically, but comprise the Lawn Supersequence (ca 1615–1600 Ma) with ages from the lower Balbirini Dolomite, and lower Doomadgee, Amos and middle Lawn Hill Formations, clustered around 1615–1610 Ma; and the Wide Supersequence (ca 1600–1585 Ma) with only two ages around 1590 Ma, one from the upper Balbirini Dolomite and the other from the upper Lawn Hill Formation. The Doom Supersequence (<1585 Ma) at the top of the Isa Superbasin is essentially unconstrained. The integration of high‐precision SHRIMP dating from continuously analysed stratigraphic sections, within a sequence stratigraphic context, provides an enhanced chronostratigraphic framework leading to more reliable interpretations of basin architecture and evolution.  相似文献   
95.
The use of in situ geochronological techniques allows for direct age constraints to be placed on fabric development and the metamorphic evolution of polydeformed and reworked terranes. The Shoal Point region of the southern Gawler Craton consists of a series of reworked granulite facies metapelitic and metaigneous units which belong to the Late Archean Sleaford Complex. Structural evidence indicates three phases of fabric development with D1 retained within boudins, D2 consisting of a series of upright open to isoclinal folds producing an axial planar fabric and D3 composed of a highly planar vertical high‐strain fabric which overprints the D2 fabric. Th–U–total Pb EPMA monazite and garnet Sm–Nd geochronology constrain the D1 event to the c. 2450 Ma Sleaford Orogeny, whereas the D2 and D3 events are constrained to the 1730–1690 Ma Kimban Orogeny. P–T pseudosections constrain the metamorphic conditions for the Sleafordian Orogeny to between 4.5 and 6 kbar and between 750 and 780 °C. Subsequent Kimban‐aged reworking reached peak metamorphic conditions of 8–9 kbar at 820–850 °C during the D2 event, followed by high‐temperature decompression to metamorphic conditions <6 kbar and 790–850 °C associated with the development of the D3 high‐strain fabric. The P–T–t evolution of the Shoal Point rocks reflects the transpressional exhumation of lower crustal rocks during the Kimban Orogeny and the development of a regional ‘flower structure’.  相似文献   
96.
The Antrim Plateau Volcanics, Australia's largest Phanerozoic flood‐basalt province, originally covered an area of at least 300 000 km2 across northern Australia. Stratigraphic constraints indicate that the Antrim Plateau Volcanics are of Early Cambrian age (ca 545–509 Ma), although previous attempts to date the Antrim basalts by radiometric methods have been inconclusive. We present an ion microprobe U–Pb zircon age of 513 ± 12 Ma for the ~250 km‐long Milliwindi dolerite dyke in the west Kimberley. The dolerite is geochemically identical to basalts of the Antrim Plateau Volcanics, and was probably a feeder dyke for basalts that have since been eroded. It is suggested that the Antrim Plateau Volcanics extended hundreds of kilometres further to the west than recognised previously and may have once covered part of the Kimberley block.  相似文献   
97.
华北克拉通北缘中段怀安蔓菁沟高压麻粒岩混杂岩带产在太古宙怀安杂岩南缘与花岗岩带交界处,由高压基性麻粒岩、辉长质麻粒岩、英云闪长质麻粒岩和少量夕线石榴片麻岩相间排列的席状岩层构成,岩层间被高应变带或剪切带分隔。高压基性麻粒岩是石榴辉石麻粒岩。据石榴石斑晶内包裹的早期矿物(Cpx+Q)估算的早期高压变质作用条件:T=800℃,P>1.4GPa。环绕斑晶的后成合晶反应边矿物组合(P1+Opx+Hb+Cpx)的变质条件为:T=820℃,P为0.7~0.9GPa。全岩Sm-Nd等时线年龄2.65Ga,矿物Sm-Nd等时线年龄1.82Ga,锆石U-Pb一致线年龄1.83Ga。高压基性麻粒岩的原岩代表晚太古代陆壳的最下部,大约在2.7Ga从上地幔分异出来,可能经壳下垫托作用加在早期陆壳底部,随后经历高压变质作用。早元古代晚期,由于地壳规模的大型逆冲作用,使其上升,并经受褶皱形变、剪切推覆和退变质等作用的改造,形成高压麻粒岩混杂岩带。  相似文献   
98.
We present a historical overview of applications of210Pb dating in Switzerland with a special emphasis on the work performed at the University of Bern. It is demonstrated that the average specific activity of210Pb in the lower atmosphere is very constant and does not show seasonal variations. We then concentrate on new results from Lobsigensee, a very small lake, and on published and new data from Lake Zurich. Several210Pb profiles from these lakes show obvious disturbances and a disagreement of the resulting sedimentation rate when compared to that for the 23 years defined by137Cs peaks of 1986 (Chernobyl) and 1963 (bomb fallout).A mean sedimentation rate of about 0.14 g cm–2 y–1 is found in the oxic and suboxic center part of Lake Zurich. In the oxic locations, the210Pb flux to the sediments was close to the atmospheric input of about 1/60 Bq cm–2 y–1. In other parts of the lake a significant deficit in the inventory of210Pb was found in the sediments. This could be due to a chemical redissolution of210Pb together with Mn under reducing conditions. In contrast, in the suboxic part of the lake (135 m depth) the flux of210Pb was about twice the atmospheric input. This excess is not caused by allochthonous contributions and is tentatively explained by the transport of sediment material resulting from small slides at the very steep lake shores or more probably by reprecipitation of210Pb together with Mn when the conditions in the lake water become locally and seasonally more oxidizing. Dissolved210Pb may migrate from locations with reducing conditions and reprecipitate under more oxic conditions. Indeed, a correlation of Mn and210Pb in sediments of Lake Zurich was found.This is the first of a series of papers to be published by this journal following the 20th anniversary of the first application of210Pb dating of lake sediments. Dr P. G. Appleby is guest editing this series.  相似文献   
99.
This paper reports results and analysis of210Pb-activity measurements in 51 lake-sediment cores from 32 lakes in the four PIRLA (Paleoecological Investigations of Recent Lake Acidification) project regions (Adirondack Mountains [New York], Northern New England, Northern Florida, and the Northern Great Lakes States). General application of the Constant Rate of Supply (Constant Flux) model for210Pb dating is valid for lakes in the PIRLA study, although application of the model is equivocal in a few lakes.210Pb inventories and profiles are replicable among closely spaced cores within a lake. Specific210Pb activity in surface sediments is negatively correlated with bulk sediment accumulation rate in seepage lakes, but not in drainage lakes. Drainage lakes with lower pH have lower unsupported210Pb inventories in sediments, but the relationship does not occur in seepage lakes.210Pb profiles in only seven of the cores, all from either the Adirondacks or the northern Great Lakes states, exhibit exponential decay curves. Deviations from an exponential profile include a flattening of the profile in the top few cm or excursions of one or a few measurements away from an exponential curve.210Pb dates typically agree with other chronostratigraphic markers, most of which are subject to greater uncertainty. Several hypotheses, including sediment mixing, hydrologic regime, sediment focusing, and acidification, are proposed to explain variation of210Pb distribution among lakes and regions. Hydrologic factors exert control on unsupported210Pb inventories in PIRLA lakes, and there is a strong focusing effect in drainage lakes but a weak focusing effect in seepage lakes.This is the third of a series of papers to be published by this journal following the 20th anniversary of the first application of210Pb dating of lake sediments. Dr P. G. Appleby is guest editing this series.  相似文献   
100.
In two of the perennially ice-covered lakes in the McMurdo Dry Valleys, lakes Hoare and Bonney in the Taylor Valley, bottom water has 14C ages of 2.7 ka and 10 ka (respectively), rendering 14C ages of bottom sediments highly problematic. Consequently, we tested the effectiveness of thermoluminescence (TL) zeroing in polymineral fine silt material from several depositional environments around and on the lake (stream suspensions, ice-surface sand dune, and silty sand from near the top of the more-than-3m-thick ice). We also conducted TL and infrared-stimulated-luminescence (IRSL) dating tests on material from three box cores recovered from the bottom of Lake Hoare, in a transect away from the abutting Canada Glacier. We observed effective zeroing of light-sensitive TL in suspended silt from one input stream and less effective zeroing from another stream. We observed effective zeroing of light-sensitive TL also in silt from a glacier-proximal eolian ice-surface dune and from sand from within the upper 5 cm of ice. In contrast, in box-core 1, the bottom sediment yielded minimum TL apparent ages of 1500-2600 yrs, with no discernable stratigraphic depth trend. IRSL dating applied to the same box-core samples produced significantly lower age estimates, ranging from ~600 ± 200 yrs to 1440 ± 270 yrs top-to-bottom, an improvement over the depth-constant ~2200 yrs TL ages. In two other cores closer to the Canada Glacier, IRSL ages from ~600 ± 200 yrs (top) to ~ 2900± 300 yrs (at depth) were measured. Not only are the IRSL ages a significant improvement over the TL results, but the near-core-top IRSL ages are also a dramatic improvement over the 14C results (~2.7 ka). IRSL dating has a demonstrated potential to supplant 14C dating for such antarctic lacustrine deposits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号