首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2455篇
  免费   445篇
  国内免费   605篇
测绘学   66篇
大气科学   670篇
地球物理   756篇
地质学   809篇
海洋学   478篇
天文学   90篇
综合类   96篇
自然地理   540篇
  2024年   10篇
  2023年   20篇
  2022年   70篇
  2021年   107篇
  2020年   123篇
  2019年   140篇
  2018年   106篇
  2017年   161篇
  2016年   129篇
  2015年   146篇
  2014年   180篇
  2013年   235篇
  2012年   164篇
  2011年   155篇
  2010年   130篇
  2009年   175篇
  2008年   160篇
  2007年   162篇
  2006年   145篇
  2005年   125篇
  2004年   126篇
  2003年   97篇
  2002年   82篇
  2001年   70篇
  2000年   86篇
  1999年   66篇
  1998年   65篇
  1997年   53篇
  1996年   47篇
  1995年   20篇
  1994年   33篇
  1993年   23篇
  1992年   15篇
  1991年   15篇
  1990年   12篇
  1989年   9篇
  1988年   19篇
  1987年   5篇
  1986年   2篇
  1985年   5篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有3505条查询结果,搜索用时 15 毫秒
91.
In high elevation cold regions of the Tibetan Plateau, suspended sediment transfer from glacier meltwater erosion is one of the important hydrological components. The Zhadang glacier is a typical valley‐type glacier in the Nyainqentanglha Mountains on the Tibetan Plateau. To make frequent and long period records of meltwater runoff and sediment processes in the very high elevation and isolated regions, an automatic system was installed near the glacier snout (5400 m a.s.l) in August 2013, to measure the transient discharge and sediment processes at 5‐min interval, which is shorter than the time span for the water flow to traverse the catchment from the farthest end to the watershed outlet. Diurnal variations of discharge, and suspended sediment concentration (SSC) were recorded at high frequency for the Zhadang glacier, before suspended sediment load (SSL) was computed. Hourly SSC varied from the range of 0.2 kg/m3 to 0.5 kg/m3 (at 8:00–9:00) to the range of 2.0 kg/m3 to 4.0 kg/m3 (at 17:00–18:00). The daily SSL was 32.24 t during the intense ablation period. Hourly SSC was linearly correlated with discharge (r = 0.885**, n = 18, p < 0.01). A digit‐eight hysteresis loop was observed for the sediment transport in the glacier area. Air temperature fluctuations influence discharge, and then result in the sediment variations. The results of this study provide insight into the responses of suspended sediment delivery processes with a high frequency data in the high elevation cold regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
92.
Evapotranspiration (ET) is an important expenditure in water and energy balances, especially on cold and high‐altitude land surfaces. Daily ET of the upper reach of the Shule River Basin was estimated using Landsat 5 TM data and the Surface Energy Balance Algorithm for Land (SEBAL) model. Based on observations made at the Suli station, the algorithms of land surface temperature and soil heat flux in SEBAL were modified. Land surface temperature was retrieved and compared with ground truth via three methods: the radiative transfer equation method, the mono‐window algorithm, and the single‐channel method. We selected the best of these methods, mono‐window algorithm, for estimating ET. The average error of daily ET estimated by the modified SEBAL model and measured by the eddy covariance system was 16.4%, with a root‐mean‐square error of 0.52 mm d?1. The estimated ET means were 3.09, 2.48, and 1.48 mm d?1 on June 9 (DOY 160), June 25 (DOY 176), and July 27 (DOY 208) of the year 2010, respectively. The average estimated ET on the glacier surface of all days was more than 3 mm d?1, a measurement that is difficult to capture in‐situ and has rarely been reported. This study will improve the understanding of water balance in cold, high‐altitude regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
93.
Topography and landscape characteristics affect the storage and release of water and, thus, groundwater dynamics and chemistry. Quantification of catchment scale variability in groundwater chemistry and groundwater dynamics may therefore help to delineate different groundwater types and improve our understanding of which parts of the catchment contribute to streamflow. We sampled shallow groundwater from 34 to 47 wells and streamflow at seven locations in a 20‐ha steep mountainous catchment in the Swiss pre‐Alps, during nine baseflow snapshot campaigns. The spatial variability in electrical conductivity, stable water isotopic composition, and major and trace ion concentrations was large and for almost all parameters larger than the temporal variability. Concentrations of copper, zinc, and lead were highest at sites that were relatively dry, whereas concentrations of manganese and iron were highest at sites that had persistent shallow groundwater levels. The major cation and anion concentrations were only weakly correlated to individual topographic or hydrodynamic characteristics. However, we could distinguish four shallow groundwater types based on differences from the catchment average concentrations: riparian zone‐like groundwater, hillslopes and areas with small upslope contributing areas, deeper groundwater, and sites characterized by high magnesium and sulfate concentrations that likely reflect different bedrock material. Baseflow was not an equal mixture of the different groundwater types. For the majority of the campaigns, baseflow chemistry most strongly resembled riparian‐like groundwater for all but one subcatchment. However, the similarity to the hillslope‐type groundwater was larger shortly after snowmelt, reflecting differences in hydrologic connectivity. We expect that similar groundwater types can be found in other catchments with steep hillslopes and wet areas with shallow groundwater levels and recommend sampling of groundwater from all landscape elements to understand groundwater chemistry and groundwater contributions to streamflow.  相似文献   
94.
The isotopic composition of precipitation (D and 18O) has been widely used as an input signal in water tracer studies. Whereas much recent effort has been put into developing methodologies to improve our understanding and modelling of hydrological processes (e.g., transit‐time distributions or young water fractions), less attention has been paid to the spatio‐temporal variability of the isotopic composition of precipitation, used as input signal in these studies. Here, we investigated the uncertainty in isotope‐based hydrograph separation due to the spatio‐temporal variability of the isotopic composition of precipitation. The study was carried out in a Mediterranean headwater catchment (0.56 km2). Rainfall and throughfall samples were collected at three locations across this relatively small catchment, and stream water samples were collected at the outlet. Results showed that throughout an event, the spatial variability of the input signal had a higher impact on hydrograph separation results than its temporal variability. However, differences in isotope‐based hydrograph separation determined preevent water due to the spatio‐temporal variability were different between events and ranged between 1 and 14%. Based on catchment‐scale isoscapes, the most representative sampling location could also be identified. This study confirms that even in small headwater catchments, spatio‐temporal variability can be significant. Therefore, it is important to characterize this variability and identify the best sampling strategy to reduce the uncertainty in our understanding of catchment hydrological processes.  相似文献   
95.
This research demonstrates the spatiotemporal variations of albedo on nine glaciers in western China during 2000–2011, by the albedo derived from two types of datasets: Landsat TM/ETM + images and MOD10A1 product. Then, the influence factors of glacier albedo and its relationship with glacier mass balance are also analyzed by the correlation approach, which is frequently used in geostatistics. The paper finds that there are different spatiotemporal variations over the glaciers in western China: (1) For a single glacier, the albedo varies gently with altitude on its tongue and increases fast in the middle part, while in the accumulation zones, the albedo value appears in the form of fluctuation. This could provide a quantitative method to retrieve the snowline by determining the threshold albedo value of snowpack and bare ice. (2) For the glaciers in western China, the albedo decreases with distance to the center of Tibetan Plateau (TP). This may relate to the elevation of glacier, for the speed of glacier retreat highly depends on air temperature. (3) In the summer period, albedo on most glaciers declines over the last 12 years, and it decreases much faster in southeastern TP than other regions, for which air temperature overwhelms the black carbon concentration. In addition, the trend of glacier albedo in summer is greatly correlated with that of measured glacier mass balance, which implies that the long‐term albedo datasets by remote sensing technology could be used to monitor and predict the change of glacier mass balance in the future. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
96.
The relationship between air (Ta) and water temperature (Tw) is very important because it shows how the temperature of a water body might respond to future changes in surface Ta. Mean monthly Tw records of three gauging stations (Bezdan, Bogojevo i Veliko Gradi?te) were analysed alongside mean monthly discharge (Q) for the same stations. Additionally, Ta series from two meteorological stations (Sombor and Veliko Gradi?te) were correlated with Tw variations over the period 1950–2012. Locally weighted scatter point smoothing (LOWESS) was used to investigate long‐term trends in the raw data, alongside the Mann–Kendall (MK) trend test. Trend significance was established using Yue–Pilon's pre‐whitening approaches to determine trends in climate data. Also, the rescaled adjusted partial sums (RAPS) method was used to detect dates of possible changes in the time series. Statistically significant warming trends were observed for annual and seasonal minimum and maximum Tw at all investigated sites. The strongest warming was observed at Bogojevo gauging station for seasonal maximum Tw, with +0.05 °C per year on average. RAPS established that the trend began in the 1980s. This behaviour is linked to climate patterns in the North and East Atlantic which determine the amount of heat advected onto mainland Europe. Statistically significant correlations were found for all Tw on an annual basis. Overall, the strongest correlations (p < 0.01) between Tw residuals and the North Atlantic Oscillation (NAO) were recorded for the winter period. These findings suggest possible predictability of Tw over seasonal time‐scales. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
97.
Water levels in cryoconite holes were monitored at high resolution over a 3‐week period on Austre Brøggerbreen (Svalbard). These data were combined with melt and energy balance modelling, providing insights into the evolution of the glacier's near‐surface hydrology and confirming that the hydrology of the near‐surface, porous ice known as the ‘weathering crust’ is dynamic and analogous to a shallow‐perched aquifer. A positive correlation between radiative forcing of melt and drainage efficiency was found within the weathering crust. This likely resulted from diurnal contraction and dilation of interstitial pore spaces driven by variations in radiative and turbulent fluxes in the surface energy balance, occasionally causing ‘sudden drainage events’. A linear decrease in water levels in cryoconite holes was also observed and attributed to cumulative increases in near‐surface ice porosity over the measurement period. The transport of particulate matter and microbes between cryoconite holes through the porous weathering crust is shown to be dependent upon weathering crust hydraulics and particle size. Cryoconite holes therefore yield an indication of the hydrological dynamics of the weathering crust and provide long‐term storage loci for cryoconite at the glacier surface. This study highlights the importance of the weathering crust as a crucial component of the hydrology, ecology and biogeochemistry of the glacier ecosystem and glacierized regions and demonstrates the utility of cryoconite holes as natural piezometers on glacier surfaces. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
98.
Metal loads were determined from water samples collected under different streamflow conditions (baseflow and storm events) in a rural catchment (NW Spain) during 4 years. A study at annual, seasonal and storm‐event scales was carried out. In all analysed scales, the export order was Fe > Al > Mn > Zn > Cu. A high inter‐annual, seasonal and storm‐event scale variability of metal load was observed. The total metal loads in stream were higher during baseflow conditions than during storm events, which only represented 4% of the duration of the study period and 25% of streamflow. During storm events, both Al and Fe loads accounted 45% of the total load of the study period, whereas Mn, Cu and Zn loads represented 42%, 33% and 24%, respectively. This highlights the role of high flows on metal export. Only four big events exported around 30% of load of each metal transported in events. At all time scales, a prevalence of export of particulate metals over dissolved metals was observed, more pronounced for Al, Fe and Mn than for Cu and Zn. The export of metals in the Corbeira catchment is influenced by runoff and, to a lesser extent, by the rainfall amount. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
99.
Amount and composition of dissolved organic matter (DOM) were evaluated for multiple, nested stream locations in a forested watershed to investigate the role of hydrologic flow paths, wetlands and drainage scale. Sampling was performed over a 4‐year period (2008–2011) for five locations with drainage areas of 0.62, 3.5, 4.5, 12 and 79 ha. Hydrologic flow paths were characterized using an end‐member mixing model. DOM composition was determined using a suite of spectrofluorometric indices and a site‐specific parallel factor analysis model. Dissolved organic carbon (DOC), humic‐like DOM and fluorescence index were most sensitive to changes with drainage scale, whereas dissolved organic nitrogen, specific UV absorbance, Sr and protein‐like DOM were least sensitive. DOM concentrations and humic‐like DOM constituents were highest during both baseflow and stormflow for a 3.5‐ha catchment with a wetland near the catchment outlet. Whereas storm‐event concentrations of DOC and humic DOM constituents declined, the mass exports of DOC increased with increasing catchment scale. A pronounced dilution in storm‐event DOC concentration was observed at peak stream discharge for the 12‐ha drainage location, which was not as apparent at the 79‐ha scale, suggesting key differences in supply and transport of DOM. Our observations indicate that hydrologic flow paths, especially during storms, and the location and extent of wetlands in the catchment are key determinants of DOM concentration and composition. This study furthers our understanding of changes in DOM with drainage scale and the controls on DOM in headwater, forested catchments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
100.
Significant changes have been observed in the hydrology of Central Rift Valley (CRV) lakes in Ethiopia, East Africa as a result of both natural processes and human activities during the past three decades. This study applied an integrated approach (remote sensing, hydrologic modelling, and statistical analysis) to understand the relative effects of natural processes and human activities over a sparsely gauged CRV basin. Lake storage estimates were calculated from a hydrologic model constructed without inputs from human impacts such as water abstraction and compared with satellite‐based (observed) lake storage measurements to characterize the magnitude of human‐induced impacts. A non‐parametric Mann–Kendall test was used to detect the presence of climatic trends (e.g. a decreasing or increasing trends in precipitation), while the Standard Precipitation Index (SPI) analysis was used to assess the long‐term, inter‐annual climate variability within the basin. Results indicate human activities (e.g. abstraction) significantly contributed to the changes in the hydrology of the lakes, while no statistically significant climatic trend was seen in the basin, however inter‐annual natural climate variability, extreme dryness, and prolonged drought has negatively affected the lakes. The relative contributions of natural and human‐induced impacts on the lakes were quantified and evaluated by comparing hydrographs of the CRV lakes. Lake Abiyata has lost ~6.5 m in total lake height between 1985 and 2006, 70% (~4.5 m) of the loss has been attributed to human‐induced causes, whereas the remaining 30% is related to natural climate variability. The relative impact analysis utilized in this study could potentially be used to better plan and create effective water‐management practices in the basin and demonstrates the utility of this integrated methodology for similar studies assessing the relative natural and human‐induced impacts on lakes in data sparse areas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号