首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1750篇
  免费   212篇
  国内免费   300篇
测绘学   8篇
大气科学   1篇
地球物理   358篇
地质学   1440篇
海洋学   81篇
天文学   14篇
综合类   46篇
自然地理   314篇
  2024年   3篇
  2023年   18篇
  2022年   23篇
  2021年   37篇
  2020年   36篇
  2019年   69篇
  2018年   44篇
  2017年   39篇
  2016年   38篇
  2015年   54篇
  2014年   56篇
  2013年   152篇
  2012年   87篇
  2011年   50篇
  2010年   36篇
  2009年   92篇
  2008年   119篇
  2007年   100篇
  2006年   109篇
  2005年   90篇
  2004年   126篇
  2003年   84篇
  2002年   90篇
  2001年   70篇
  2000年   66篇
  1999年   69篇
  1998年   79篇
  1997年   76篇
  1996年   61篇
  1995年   64篇
  1994年   54篇
  1993年   31篇
  1992年   25篇
  1991年   15篇
  1990年   25篇
  1989年   16篇
  1988年   11篇
  1987年   11篇
  1986年   8篇
  1985年   9篇
  1984年   3篇
  1983年   3篇
  1981年   3篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1973年   1篇
排序方式: 共有2262条查询结果,搜索用时 515 毫秒
101.
This paper presents the preliminary results from a study of Holocene-emerged shorelines, marine notches, and their tectonic implications along the Jalisco coast. The Pacific coast of Jalisco, SW Mexico, is an active tectonic margin. This coast has been the site of two of the largest earthquakes to occur in Mexico this century: the 1932 (Mw 8.2) Jalisco earthquake and the 1995 (Mw 8.0) Colima earthquake. Measurement and preliminary radiocarbon dating of emergent paleoshorelines along the Jalisco coast provide the first constraints upon the timing for tectonic uplift. Along this coastline, uplifted Holocene marine notches and wave-cut platforms occur at elevations ranging from ca. 1 to 4.5 m amsl. In situ intertidal organisms dated with radiocarbon, the first ever reported for the Jalisco area, provide preliminary results that record tectonic uplift during at least the past 1300 years BP at an average rate of about 3 mm/year. We propose a model in which coseismic subsidence produced by offshore earthquakes is rapidly recovered during the postseismic and interseismic periods. The long-term period is characterized by slow tectonic uplift of the Jalisco coast. We found no evidence of coastal interseismic and long-term subsidence along the Jalisco coast.  相似文献   
102.
INTRODUCTIONHowtocombinethestudyofseismogenictectonicswithearthquakepredictionisanurgentscientificdifficulty .Thereexistbiggapsbetweenstudymethodsandcurrentknowledgeonseismogenitectonics ,earthquakeprediction ,seismogenesisandthephysicsofearthquakeoccurre…  相似文献   
103.
Continent-continent collision is the most important driving mechanism for the occurrence of various geological processes in the continental lithosphere. How to recognize and determine continent-continent collision,especially its four-dimensional temporal-spatial evolution, is a subject that geological communities have long been concerned about and studied. Continent-continent collision is mainly manifested by strong underthrnsting (subduction) of the underlying block along an intracontinental subduction zone and continuous obduction (thrusting propagation) of the overlying block along the intracontinental subduction zone, the occurrence of a basin-range tectonic framework in a direction perpendicular to the subduction zone and the flexure and disruption of the Moho. On the basis of numerical modeling, the authors discuss in detail the couplings between various amounts and rates of displacement caused by basin subsidence, mountain uplift and Moho updoming and downflexure during obduction (thrusting propagation) and subduction and the migration pattern of basin centers. They are probably indications or criteria for judgment or determination of continent-continent collision.  相似文献   
104.
105.
106.
Active tectonics in a basin plays an important role in controlling a fluvial system through the change in channel slope. The Baghmati, an anabranching, foothills-fed river system, draining the plains of north Bihar in eastern India has responded to ongoing tectonic deformation in the basin. The relatively flat alluvial plains are traversed by several active subsurface faults, which divide the area in four tectonic blocks. Each tectonic block is characterized by association of fluvial anomalies viz. compressed meanders, knick point in longitudinal profiles, channel incision, anomalous sinuosity variations, sudden change in river flow direction, river flow against the local gradient and distribution of overbank flooding, lakes, and waterlogged area. Such fluvial anomalies have been identified on the repetitive satellite images and maps and interpreted through DEM and field observations to understand the nature of vertical movements in the area. The sub-surface faults in the Baghmati plains cut across the river channel and also run parallel which have allowed us to observe the effects of longitudinal and lateral tilting manifested in avulsions and morphological changes.  相似文献   
107.
108.
The study area is located in the south-eastern part of the Crati valley (Northern Calabria, Italy), which is a graben bordered by N–S trending normal faults and crossed by NW–SE normal left-lateral faults. Numerous severe crustal earthquakes have affected the area in historical time. Present-day seismic activity is mainly related to the N–S faults located along the eastern border of the graben. In this area, much seismically induced deep-seated deformation has also been recognised.In the present paper, radon concentrations in soil gas have been measured and compared with (a) lithology, (b) Quaternary faults, (c) historical and instrumental seismicity, and (d) deep-seated deformation.The results highlight the following:
(a) There is no evidence of a strong correlation between lithology and the radon anomalies.
(b) A clear correlation between the N–S geometry of radon anomalies and the orientation of main fault systems has been recognised, except in the southernmost part of the area, where the radon concentrations are strongly affected by the superposition of the N–S and the NW–SE fault systems.
(c) Epicentral zones of instrumental and historical earthquakes correspond to the highest values of radon concentrations, probably indicating recent activated fault segments. In particular, high radon values occur in the zones struck by earthquakes in 1835, 1854, and 1870.
(d) Deep-seated gravitational deformation generally coincides with zones characterised by low radon concentrations.
In the studied area, the anisotropic distribution of radon concentrations is congruent with the presence of neotectonic features and deep-seated gravitational phenomena. The method used in this study could profitably contribute towards either seismic risk or deep-seated gravitational deformation analyses.  相似文献   
109.
The “Nares Strait problem” represents a debate about the existence and magnitude of left-lateral movements along the proposed Wegener Fault within this seaway. Study of Palaeogene Eurekan tectonics at its shorelines could shed light on the kinematics of this fault. Palaeogene (Late Paleocene to Early Eocene) sediments are exposed at the northeastern coast of Ellesmere Island in the Judge Daly Promontory. They are preserved as elongate SW–NE striking fault-bounded basins cutting folded Early Paleozoic strata. The structures of the Palaeogene exposures are characterized by broad open synclines cut and displaced by steeply dipping strike-slip faults. Their fold axes strike NE–SW at an acute angle to the border faults indicating left-lateral transpression. Weak deformation in the interior of the outliers contrasts with intense shearing and fracturing adjacent to border faults. The degree of deformation of the Palaeogene strata varies markedly between the northwestern and southeastern border faults with the first being more intense. Structural geometry, orientation of subordinate folds and faults, the kinematics of faults, and fault-slip data suggest a multiple stage structural evolution during the Palaeogene Eurekan deformation: (1) The fault pattern on Judge Daly Promontory is result of left-lateral strike-slip faulting starting in Mid to Late Paleocene times. The Palaeogene Judge Daly basin formed in transtensional segments by pull-apart mechanism. Transpression during progressive strike-slip shearing gave rise to open folding of the Palaeogene deposits. (2) The faults were reactivated during SE-directed thrust tectonics in Mid Eocene times (chron 21). A strike-slip component during thrusting on the reactivated faults depends on the steepness of the fault segments and on their obliquity to the regional stress axes.Strike-slip displacement was partitioned to a number of sub-parallel faults on-shore and off-shore. Hence, large-scale lateral movements in the sum of 80–100 km or more could have been accommodated by a set of faults, each with displacements in the order of 10–30 km. The Wegener Fault as discrete plate boundary in Nares Strait is replaced by a bundle of faults located mainly onshore on the Judge Daly Promontory.  相似文献   
110.
以全球大地构造为背景讨论了玄武岩浆起源和演化的一些基本概念.这些概念的正确理解有助于合理解释各种环境中火成岩的形成机制,也有助于依据野外岩石组合来判别古构造环境.在此基础上结合已有资料和观察,对中国东部中生代岩石圈减薄及中-新生代基性火山岩成因提出了一些新解释.这些解释与地质观察相吻合,且符合基本的物理学原理.虽然中国东部基性火山活动可称为"板内"火山活动,但它实际上是板块构造的特殊产物.中国东部中生代岩石圈减薄是其下部被改造为软流层的缘故.这种改造是加水"软化"所致.水则源于中国东部地幔过渡带(410~660 km)内古太平洋(或其前身)俯冲板块脱水作用.其将岩石圈底部改造为软流层的过程,实际上就是岩石圈减薄的过程.因为软流层是地幔对流的重要部分,而大陆岩石圈则不直接参与地幔对流.中生代玄武岩具有εNd<0的特征,说明其源于新近改造而成的软流层,亦即原古老岩石圈之底部.中国大陆北北东-南南西向的海拔梯度突变界线与东-西部重力异常,陆壳厚度变化,以及地幔地震波速变化梯度吻合.因此可将北北东-南南西向梯度线称为"东-西梯度界".该界东-西海拔高差(西部高原与东部丘陵平原),陆壳厚度差异(西部厚而东部薄)和100~150 km的深度范围地幔地震波速差异(西部快而东部慢),均受控于上地幔重力均衡原理.这表明西部高原岩石圈厚度>150~200 km,而东部丘陵平原岩石圈厚度<80km."遥远"的西太平洋俯冲带具有自然的地幔楔吸引作用.此吸引作用可引起中国东部"新生"软流层东流.软流层东流必将引起西部高原底部软流层的东向补给(流动).这一过程必然导致东移软流层的减压,即从西部的深源(岩石圈深度>150~200 km处)到东部的浅源(岩石圈深度~80km处).东移软流层的减压分熔可合理解释具有软流圈地球化学特征(εNd>0)的新生代中国东部基性火山活动及玄武岩的成因.这些对中国东部中-新生代地质过程的解释,将为更加细致的,以岩石学和地球化学为主的讨论所验证.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号