首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   15篇
  国内免费   33篇
地球物理   110篇
地质学   122篇
海洋学   3篇
综合类   1篇
自然地理   11篇
  2023年   2篇
  2022年   3篇
  2021年   3篇
  2020年   4篇
  2019年   3篇
  2018年   5篇
  2017年   4篇
  2016年   4篇
  2015年   6篇
  2014年   4篇
  2013年   9篇
  2012年   8篇
  2011年   8篇
  2010年   6篇
  2009年   10篇
  2008年   22篇
  2007年   11篇
  2006年   9篇
  2005年   9篇
  2004年   14篇
  2003年   9篇
  2002年   10篇
  2001年   12篇
  2000年   9篇
  1999年   9篇
  1998年   5篇
  1997年   7篇
  1996年   6篇
  1995年   4篇
  1994年   9篇
  1993年   7篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1987年   1篇
  1978年   1篇
排序方式: 共有247条查询结果,搜索用时 31 毫秒
181.
182.
A hummocky flow characterised by the presence of toes, lobes, tumuli and possible lava tube system is exposed near Daund, western Deccan Volcanic Province, India. The lava tube system is exposed as several exhumed outcrops and is composed of complex branching and discontinuous segments. The roof of the lava tube has collapsed but original lava tube walls and fragments of the tube roof are seen at numerous places along the tube. At some places the tube walls exhibit a single layer of lava lining, whereas, at other places it shows an additional layer characterised by smooth surface and polygonal cracks. The presence of a branching and meandering lava tube system in the Daund flow, which represents the terminal parts of Thakurwadi Formation, shows that the hummocky flow developed at a low local volumetric flow rate. This tube system developed in the thinner parts of the flow sequence; and tumuli developed in areas where the tube clogged temporarily in the sluggish flow.  相似文献   
183.
Pyroclastic flows from the 1991 eruption of Unzen volcano,Japan   总被引:1,自引:0,他引:1  
Pyroclastic flows from Unzen were generated by gravitational collapse of the growing lava dome. As soon as the parental lobe failed at the edge of the dome, spontaneous shattering of lava occurred and induced a gravity flow of blocks and finer debris. The flows had a overhanging, tongue-like head and cone- or rollershaped vortices expanding outward and upward. Most of the flows traveled from 1 to 3 km, but some flows reached more than 4 km, burning houses and killing people in the evacuated zone of Kita-kamikoba on the eastern foot of the volcano. The velocities of the flows ranged from 15 to 25 m/s on the gentle middle flank. Observations of the flows and their deposits suggest that they consisted of a dense basal avalanche and an overlying turbulent ash cloud. The basal avalanche swept down a topographic low and formed to tongue-like lobe having well-defined levees; it is presumed to have moved as a non-Newtonian fluid. The measured velocities and runout distances of the flows can be matched to a Bingham model for the basal avalanche by the addition of turbulent resistance. The rheologic model parameters for the 29 May flow are as follows: the density is 1300 kg/m3, the yield strength is 850 Pa, the viscosity is 90 Pa s, and the thickness of the avalanche is 2 m. The ash cloud is interpreted as a turbulent mixing layer above the basal avalanche. The buoyant portions of the cloud produced ash-fall deposits, whereas the dense portions moved as a surge separated from the parental avalanche. The ash-cloud surges formed a wide devastated zone covered by very thin debris. The initial velocities of the 3 June surges, when they detached from avalanches, are determined by the runout distance and the angle of the energy-line slope. A comparison between the estimated velocities of the 3 June avalanches and the surges indicates that the surges that extended steep slopes along the avalanche path, detached directly from the turbulent heads of the avalanches. The over-running surge that reached Kita-Kamikoba had an estimated velocity higher than that of the avalanche; this farther-travelled surge is presumed to have been generated by collapse of a rising ash-cloud plume.  相似文献   
184.
Combining field reconstruction and landscape evolution modelling can be useful to investigate the relative role of different drivers on catchment response. The Geren Catchment (~45 km2) in western Turkey is suitable for such a study, as it has been influenced by uplift, climate change and lava damming. Four Middle Pleistocene lava flows (40Ar/39Ar‐ dated from 310 to 175 ka) filled and dammed the Gediz River at the Gediz–Geren confluence, resulting in base‐level fluctuations of the otherwise uplift‐driven incising river. Field reconstruction and luminescence dating suggest fluvial terraces in the Geren Catchment are capped by Middle Pleistocene aggradational fills. This showed that incision of the Geren trunk stream has been delayed until the end of MIS 5. Subsequently, the catchment has responded to base‐level lowering since MIS 4 by 30 m of stepped net incision. Field reconstruction left us with uncertainty on the main drivers of terrace formation. Therefore, we used landscape evolution modelling to investigate catchment response to three scenarios of base‐level change: (i) uplift with climate change (rainfall and vegetation based on arboreal pollen); (ii) uplift, climate change and short‐lived damming events; (iii) uplift, climate and long‐lived damming events. Outputs were evaluated for erosion–aggradation evolution in trunk streams at two different distances from the catchment outlet. Climate influences erosion–aggradation activity in the catchment, although internal feedbacks influence timing and magnitude. Furthermore, lava damming events partly control if and where these climate‐driven aggradations occur. Damming thus leaves a legacy on current landscape evolution. Catchment response to long‐duration damming events corresponds best with field reconstruction and dating. The combination of climate and base level explains a significant part of the landscape evolution history of the Geren Catchment. By combining model results with fieldwork, additional conclusions on landscape evolution could be drawn. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
185.
刘哲  薛怀民  曹光跃 《中国地质》2017,44(1):151-176
内蒙古东南部正蓝旗地区中生代火山岩广泛出露,岩性主要包括流纹岩、粗面岩、碎斑熔岩、熔结凝灰岩以及黑曜岩等,以碎斑熔岩发育为显著特征。本次研究测得流纹岩、霏细质碎斑熔岩及熔结凝灰岩的LA-ICP-MS锆石U-Pb年龄分别为(141.4±0.7)Ma、(141.6±0.6)Ma和(139.4±0.7)Ma,三者在误差范围内一致,表明研究区火山活动(从溢流、爆发到侵出)持续的时间很短,时代为早白垩世早期,属张家口组。除个别样品,正蓝旗地区晚期侵出的碎斑熔岩与早期溢流相的流纹岩、粗面岩在地球化学特征上极为一致,均为富硅富钾,贫Ca、Mg和Al,属粗面岩-流纹岩组合,部分样品具有碱性流纹岩的特征;富集Rb、Th、U等大离子亲石元素,而强烈亏损Ba、Sr、Ti、P;轻稀土元素(LREE)富集,Eu强烈亏损,轻、重稀土元素分馏较强(LaN/YbN主要介于6.87~42.74)。碎斑熔岩体相较于早期熔岩更加富硅贫碱,表明流纹岩-粗面岩喷溢之后,岩浆房中剩余岩浆又经过一定程度的分异,向更为富硅贫碱方向演化之后侵出地表。正蓝旗地区火山岩具有A型花岗岩的特征,为A_1型为主,A_1—A_2过渡的地球化学特征。碎斑熔岩体与流纹岩-粗面岩的Nb/Ta介于10.46~24.02,在地壳和地幔岩浆Nb/Ta比值之间;Y/Nb、Ti/Yb、Ti/Zr均体现出壳幔混合的特点;Rb/Sr介于0.61~64.51,为壳源特征。因此,研究区火山岩是造山后向板内非造山转换并以板内非造山为主的伸展环境下,经较为强烈地幔物质改造的下地壳部分熔融的产物。  相似文献   
186.
Dendrochronology and radiocarbon dating, with reference to remote sensing, digital elevation modeling, geological, and geomorphological data, provide new age constraints for the Jombolok lava field in the East Sayan Mountains (Siberia). The Jombolok lava field originated in the latest Late Pleistocene and underwent at least four phases of volcanic activity recorded in lava flows. Two earliest phases followed shortly one after another more than 13 kyr ago. The third phase corresponding to eruptions of Kropotkin volcano can be timed only relatively. The fourth phase has been dated by dendrochronology and AMS 14C of well-preserved wood buried under the youngest lava which occurs among older lavas near the Jombolok River mouth. The age of this activity is bracketed between the death of trees caused by eruptions 1268-928 years ago and the beginning of new tree growth on the surface of the most recent lavas 900 years ago.  相似文献   
187.
The ca. 8800 14C yrs BP Sulphur Creek lava flowed eastward 12 km from the Schriebers Meadow cinder cone into the Baker River valley, on the southeast flank of Mount Baker volcano. The compositionally-zoned basaltic to basaltic andesite lava entered, crossed and partially filled the 2-km-wide and > 100-m-deep early Holocene remnant of Glacial Lake Baker. The valley is now submerged beneath a reservoir, but seasonal drawdown permits study of the distal entrant lava. As a lava volume that may have been as much as 180 × 106 m3 entered the lake, the flow invaded the lacustrine sequence and extended to the opposite (east) side of the drowned Baker River valley. The volume and mobility of the lava can be attributed to a high flux rate, a prolonged eruption, or both. Basalt exposed below the former level of the remnant glacial lake is glassy or microcrystalline and sparsely vesicular, with pervasive hackly or blocky fractures. Together with pseudopillow fractures, these features reflect fracturing normal to penetrative thermal fronts and quenching by water. A fine-grained hyaloclastite facies was probably formed during quench fragmentation or isolated magma-water explosions. Although the structures closely resemble those developed in lava-ice contact environments, establishing the depositional environment for lava exhibiting similar intense fracturing should be confirmed by geologic evidence rather than by internal structure alone. The lava also invaded the lacustrine sequence, forming varieties of peperite, including sills that are conformable within the invaded strata and resemble volcaniclastic breccias. The peperite is generally fragmental and clast- or matrix-supported; fine-grained and rounded fluidal margins occur locally. The lava formed a thickened subaqueous plug that, as the lake drained in the mid-Holocene, was exposed to erosion. The Baker River then cut a 52-m-deep gorge through the shattered, highly erodible basalt.  相似文献   
188.
Glaciovolcanic deposits are critical for documenting the presence and thickness of terrestrial ice-sheets, and for testing hypotheses about inferred terrestrial ice volumes based on the marine record. Deposits formed by the coincidence of volcanism and ice at the Mount Edziza volcanic complex (MEVC) in northern British Columbia, Canada, preserve an important record for documenting local and possibly regional ice dynamics. Pillow Ridge, located at the northwestern end of the MEVC, formed by ice-confined, fissure-fed eruptions. It comprises predominantly pillow lavas and volcanic breccias of alkaline basalt composition, with subordinate finer-grained volcaniclastic deposits and dykes. The ridge is presently  4 km long,  1000 m in maximum width, and  600 m high. Fifteen syn- and post-eruptive lithofacies are recognized in excellent exposures along the glacially dissected western side of the ridge. We recognize five lithofacies associations: (1) poorly sorted tuff breccia and dykes, (2) proximal pillow lava, dykes and tuff breccia, (3) distal pillow lava, poorly sorted conglomerate and well-sorted volcanic sandstone, (4) interbedded tuff, lapilli tuff, and tuff breccia units, and (5) heterolithic volcanogenic conglomerate and sandstone. Given the abundance of pillow lavas and the lack of surrounding topographic barriers capable of impounding water, we agree with Souther [Souther, J.G., 1992. The late Cenozoic Mount Edziza volcanic complex. Geol. Soc. Can. Mem., vol. 420. 320 pp] that the bulk of the edifice formed while confined by ice, but have found evidence for a more complex and variable eruption history than that which he proposed. Preliminary estimates of water-ice depths derived from FTIR analyses of H2O give ranges of 300 to 680 m assuming 0 ppm CO2, and 857 to 1297 m assuming 25 ppm CO2. Variations in depth estimates among samples may indicate that water/ice depths changed during the evolution of the ridge, which is consistent with our interpretations for the origins of different lithofacies associations. Given that the age of the units are likely to be ca. 0.9 Ma [Souther, J.G., 1992. The late Cenozoic Mount Edziza volcanic complex. Geol. Soc. Can. Mem., vol. 420. 320 pp], Pillow Ridge may be the best documentation of a regional high stand of the Cordilleran Ice Sheet (CIS) in the middle Pleistocene, and an excellent example of the lithofacies and stratigraphic complexities produced by variations in water levels during a prolonged glaciovolcanic eruption.  相似文献   
189.
During many lava dome-forming eruptions, persistent rockfalls and the concurrent development of a substantial talus apron around the foot of the dome are important aspects of the observed activity. An improved understanding of internal dome structure, including the shape and internal boundaries of the talus apron, is critical for determining when a lava dome is poised for a major collapse and how this collapse might ensue. We consider a period of lava dome growth at the Soufrière Hills Volcano, Montserrat, from August 2005 to May 2006, during which a  100 × 106 m3 lava dome developed that culminated in a major dome-collapse event on 20 May 2006. We use an axi-symmetrical Finite Element Method model to simulate the growth and evolution of the lava dome, including the development of the talus apron. We first test the generic behaviour of this continuum model, which has core lava and carapace/talus components. Our model describes the generation rate of talus, including its spatial and temporal variation, as well as its post-generation deformation, which is important for an improved understanding of the internal configuration and structure of the dome. We then use our model to simulate the 2005 to 2006 Soufrière Hills dome growth using measured dome volumes and extrusion rates to drive the model and generate the evolving configuration of the dome core and carapace/talus domains. The evolution of the model is compared with the observed rockfall seismicity using event counts and seismic energy parameters, which are used here as a measure of rockfall intensity and hence a first-order proxy for volumes. The range of model-derived volume increments of talus aggraded to the talus slope per recorded rockfall event, approximately 3 × 103–13 × 103 m3 per rockfall, is high with respect to estimates based on observed events. From this, it is inferred that some of the volumetric growth of the talus apron (perhaps up to 60–70%) might have occurred in the form of aseismic deformation of the talus, forced by an internal, laterally spreading core. Talus apron growth by this mechanism has not previously been identified, and this suggests that the core, hosting hot gas-rich lava, could have a greater lateral extent than previously considered.  相似文献   
190.
Basaltic 'a'ā lava flows often demonstrate compound morphology, consisting of many juxtaposed and superposed flow units. Following observations made during the 2001 eruption of Mt. Etna, Sicily, we examine the processes that can result from the superposition of flow units when the underlying units are sufficiently young to have immature crusts and deformable cores. During this eruption, we observed that the emplacement of new surface flow units may reactivate older, underlying units by squeezing the still-hot flow core away from the site of loading. Here, we illustrate three different styles of reactivation that depend on the time elapsed between the emplacement of the two flow units, hence the rheological contrast between them. For relatively long time intervals (2 to 15 days), and consequently significant rheological contrasts, superposition can pressurise the underlying flow unit, leading to crustal rupture and the subsequent extrusion of a small volume of high yield strength lava. Following shorter intervals (1 to 2 days), the increased pressure caused by superposition can result in renewed, slow advance of the underlying immature flow unit front. On timescales of < 1 day, where there is little rheological contrast between the two units, the thin intervening crust can be disrupted during superposition, allowing mixing of the flow cores, large-scale reactivation of both units, and widespread channel drainage. This mechanism may explain the presence of drained channels in flows that are known to have been cooling-limited, contrary to the usual interpretation of drainage as an indicator of volume-limited behaviour. Because the remobilisation of previously stagnant lava can occur swiftly and unexpectedly, it may pose a significant hazard during the emplacement of compound flows. Constant monitoring of flow development to identify areas where superposition is occurring is therefore recommended, as this may allow potentially hazardous rapid drainage events to be forecast. Reactivation processes should also be borne in mind when reconstructing the emplacement of old lava flow fields, as failure to recognise their effects may result in the misinterpretation of features such as drained channels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号