首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2417篇
  免费   299篇
  国内免费   599篇
测绘学   133篇
大气科学   60篇
地球物理   466篇
地质学   983篇
海洋学   995篇
天文学   30篇
综合类   289篇
自然地理   359篇
  2024年   12篇
  2023年   31篇
  2022年   105篇
  2021年   105篇
  2020年   109篇
  2019年   111篇
  2018年   92篇
  2017年   90篇
  2016年   112篇
  2015年   105篇
  2014年   136篇
  2013年   148篇
  2012年   146篇
  2011年   165篇
  2010年   161篇
  2009年   132篇
  2008年   133篇
  2007年   152篇
  2006年   131篇
  2005年   122篇
  2004年   108篇
  2003年   101篇
  2002年   97篇
  2001年   79篇
  2000年   86篇
  1999年   51篇
  1998年   73篇
  1997年   61篇
  1996年   68篇
  1995年   46篇
  1994年   48篇
  1993年   44篇
  1992年   28篇
  1991年   28篇
  1990年   26篇
  1989年   10篇
  1988年   7篇
  1987年   8篇
  1986年   7篇
  1985年   12篇
  1984年   7篇
  1983年   7篇
  1982年   5篇
  1981年   5篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
排序方式: 共有3315条查询结果,搜索用时 750 毫秒
11.
通过对延边地区东部五道沟岩群黑云阳起石片岩的单颗粒锆石SHRIMP U-Pb年龄测定.获得21个单点年龄,其中包括7组谐和年龄和1组不谐和年龄.谐和年龄分别为1347.8 Ma、844.8 Ma、340.2~313.7 Ma(平均值为323±23 Ma,N=4,MSWD=0.23,置信度=0.88)、292.9~288.3 Ma(平均值=291±25 Ma,N=3,MSWD=0.031.置信度=0.86)、279.2~266.2 Ma(平均值为279±28 Ma,N=4,MSWD=0.031,置信度=0.86)、127.4~124.2 Ma(206Pb/208U年龄平均值为126.5±3.7 Ma,N=5,MSWD=0.12;置信度=O.97)、116.1~106.3 Ma(平均值为115±39 Ma,N=2,MSWD=1.2置信度=0.27),不谐和年龄的下交点年龄为(451±120)Ma、上交点年龄为(1811±400)Ma(MSWD=7.2);这一结果表明:阳起石片岩的原岩主要是来自中元古代、新元古代和早古生代的碎屑物,指示五道沟群的沉积成岩作用发生在石炭世(323±23 Ma),变质作用发生在晚二叠世(291±25 Ma),之后在279.2~266.2 Ma、126.5~106.3 Ma先后受两次岩浆用和蚀变作用的改造.  相似文献   
12.
新疆准噶尔盆地西北缘吐谷鲁群沉积体系分析   总被引:2,自引:0,他引:2  
根据在新疆准噶尔盆地西北缘乌尔禾-夏子街地区的野外地层露头观察、追索及钻孔资料分析研究,笔者认为,该区下白垩统吐谷鲁群是一套以灰绿色砂岩和红色、棕红色泥岩组成的干燥气候条件下形成的内陆湖相碎屑沉积,发育浅水三角洲体系,主要由三角洲平原和三角洲前缘相组成.吐谷鲁群碎屑岩的碎屑粒度由下而上可分为两个大的韵律旋回,即粗-细-粗-细,反映了水体扩展到萎缩再扩展的过程.有利铀成矿的砂岩层主要集中在两个韵律旋回的底部,形成于三角洲平原分流河道、决口扇、三角洲前缘水下分流河道和水下堤环境.  相似文献   
13.
在基于互联网的应用、信息数字化、多种技术发展较为成熟及适应公众需求的基础上,对矿物数字博物馆的建设做了简要的分析,将矿物按矿物一结晶学分类方案将馆藏矿物进行合理的分类,设计了七大功能结构和相应的子结构,并对矿物所要展示的内容设定了标准.建设矿物数字博物馆旨在利用三维技术、多媒体技术、文字信息等,将矿物从宏观的外形到抽象的晶体形态和微观的晶体结构及其最小单位结构通过网络的形式具体展现给观众.矿物数字博物馆的建设可以为人们认知整个矿物世界搭建一个良好的平台,在科研教学、推动国民科学普及教育、培养创新人才方面发挥重要作用.  相似文献   
14.
The changes in the phytoplankton absorption properties during a diurnal cycle were investigated at one station located in the north-western area of the Alborán Sea. The experiment was performed in spring when the water column was strongly stratified. This hydrological situation permitted the establishment of a deep chlorophyll a (chl a) fluorescence maximum (DFM) which was located on average close to the lower limit of the mixed layer and the nutricline. The relative abundance of pico-phytoplankton (estimated as its contribution to the total chl a) was higher in the surface, however, micro-phytoplankton dominated the community at the DFM level. Chl a specific absorption coefficient (a*(λ)) also varied with optical depth, with a* (the spectrally average specific absorption coefficient) decreasing by 30% at the DFM depth with respect to the surface. A significant negative correlation between the contribution of the micro-phytoplankton to the total chl a and a* was obtained indicating that a* reduction was due to changes in the packaging effect. Below the euphotic layer, a* increased three-fold with respect to the DFM, which agrees with the expected accumulation of accessory pigments relative to chl a as an acclimation response to the low available irradiance. The most conspicuous change during the diurnal cycle was produced in the euphotic layer where the chl a concentration decreased significantly in the afternoon (from a mean concentration of 1.1 μg L−1 to 0.7 μg L−1) and increased at dusk when it averaged 1.4 μg L−1. In addition, a* and the blue-to-red absorption band ratio increased in the afternoon. These results suggest that a*(λ) diurnal variability was due to increase in photo-protective and accessory pigments relative to chl a. The variation ranges of a*(λ) at 675 and 440 nm (the absorption peaks in the red and blue spectral bands, respectively) in the euphotic layer were 0.01–0.04 and 0.02–0.10 m2 mg−1 chl a, respectively. Approximately 30% out of this variability can be attributed to the diurnal cycle. This factor should therefore be taken into account in refining primary production models based on phytoplankton light absorption.  相似文献   
15.
Primary productivity in the East China Sea and its adjacent area was measured by the13C tracer method during winter, summer and fall in 1993 and 1994. The depth-integrated primary productivity in the Kuroshio Current ranged from 220 to 350 mgC m−2d−1, and showed little seasonal variability. High primary productivity (above 570 mgC m−2d−1) was measured at the center of the continental shelf throughout the observation period. The productivity at the station nearest to the Changjiang estuary exhibited a distinctive seasonal change from 68 to 1,500 mgC m−2d−1. Depth-integrated primary productivity was 2.7 times higher in the shelf area than the rates at the Kuroshio Current. High chlorophyll-a specific productivity (mgC mgChl.-a−2d−1) throughout the euphotic zone was mainly found in the shelf area rather than off-shelf area, probably due to higher nutrient availability and higher activity of phytoplankton at the subsurface layer in the shelf area.  相似文献   
16.
Carbon cycle is connected with the most important environmental issue of Global Change.As one of the major carbon reservoirs, oceans play an important part in the carbon cycle. In recent years, iron seems to give us a good news that oceanic iron fertilization could stimulate biological productivity as CO2 sink of human-produced CO2. Oceanic iron fertilization experiments have verified that adding iron into high nutrient low chlorophyll (HNLC) seawaters can increase phytoplankton production and export organic carbon, and hence increase carbon sink of anthropogenic CO2, to reduce global warming. In sixty days, the export organic carbon could reach 10 000 times for adding iron by model prediction and in situ experiment, i.e. the atmospheric CO2 uptake and inorganic carbon drawdown in upper seawaters also have the same magnitude. Therefore, oceanic iron fertilization is one of the strategies for increasing carbon sink of anthropogenic CO2. The paper is focused on the iron fertilization, especially in situ o  相似文献   
17.
18.
A nutrient dynamic model coupled with a 3D physical model has been developed to study the annual cycle of phytoplankton production in the Yellow Sea. The biological model involves interactions between inorganic nitrogen (nitrate and ammonium), phosphate and phytoplankton biomass. The model successfully reproduces the main features of phytoplankton-nutrient variation and dynamics of production. 1. The well-mixed coastal water is characterized by high primary production, as well as high new production. 2. In summer, the convergence of tidal front is an important hydrodynamic process, which contributes to high biomass at frontal areas. 3. The evolution of phytoplankton blooms and thermocline in the central region demonstrate that mixing is a dominant factor to the production in the Yellow Sea. In this simulation, nitrate- and ammonium-based productions are estimated regionally and temporally. The northern Yellow Sea is one of the highly ranked regions in the Yellow Sea for the capability of fixing carbon and nitrogen. The annual averaged f-ratio of 0.37 indicates that regenerated production prevails over the Yellow Sea. The result also shows that phosphate is the major nutrient, limiting phytoplankton growth throughout the year and it can be an indicator to predict the bloom magnitude. Finally, the relative roles of external nutrient sources have been evaluated, and benthic fluxes might play a significant role in compensating 54.6% of new nitrogen for new production consumption.  相似文献   
19.
- The wave-current forces on vertical piles in side-by-side arrangement induced by irregular waves with opposing current are investigated experimentally in this paper. The characteristics in both time and frequency domain of in-line, lift and resultant forces are analyzed. The grouping effect coefficients of inline, lift and resultant forces on piles related to KC number and relative spacing parameters are given. These results are compared with those in the case of irregular waves combined with following currents. It is found that the results in these two cases are quite different. The range of KC number tested is 10- 60, the range of Reynolds number is (0.55-3.43) ×104.  相似文献   
20.
The European Regional Seas Ecosystem Model (ERSEM) has been coupled with a two-dimensional depth-averaged transport model of the Humber plume region and run to simulate 1988–1989. Simulations of the spatial and temporal variations in chlorophyll-a, nitrate, phosphate and suspended particulate matter distributions in winter, spring and summer show how the development of the spring bloom and subsequent maintenance of primary production is controlled by the physicochemical environment of the plume zone. Results are also shown for two stations, one characterised by the high nutrient and suspended matter concentrations of the plume and the other by the relatively low nutrient and sediment concentrations of the offshore waters. The modelled net primary production at the plume site was 105 g C m−2 a−1 and 127 g C m−2 a−1 offshore. Primary production was controlled by light limitation between October and March and by the availability of nutrients during the rest of the year. The phytoplankton nutrient demand is met by in-situ recycling processes during the summer. The likely effect of increasing and decreasing anthropogenic riverine inputs of nitrate and phosphate upon ecosystem function was also investigated. Modelling experiments indicate that increasing the nitrogen to silicate ratio in freshwater inputs increased the production of non-siliceous phytoplankton in the plume. The results of this model have been used to calculate the annual and quarterly mass balances describing the usage of inorganic nitrogen, phosphate and silicate within the plume zone for the period of the NERC North Sea survey (September 1988 to October 1989). The modelled Humber plume retains 3.9% of the freshwater dissolved inorganic nitrogen, 2.2% of the freshwater phosphate and 1.3% of the freshwater silicate input over the simulated seasonal cycle. The remainder is transported into the southern North Sea in either dissolved or particulate form. The reliability of these results is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号