首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   16篇
  国内免费   2篇
测绘学   4篇
大气科学   2篇
地球物理   77篇
地质学   11篇
海洋学   5篇
综合类   4篇
自然地理   15篇
  2024年   2篇
  2022年   1篇
  2021年   12篇
  2020年   5篇
  2019年   5篇
  2018年   3篇
  2017年   6篇
  2016年   6篇
  2015年   1篇
  2014年   2篇
  2013年   12篇
  2012年   8篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2007年   2篇
  2006年   6篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  2000年   5篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1985年   1篇
  1982年   1篇
  1977年   1篇
排序方式: 共有118条查询结果,搜索用时 93 毫秒
31.
Automation in baseflow separation procedures allowed fast and convenient baseflow and baseflow index (BF and BFI) estimation for studies including multiple watersheds and covering large spatio‐temporal scales. While most of the existing algorithms are developed and tested extensively for rainfall‐ and baseflow‐dominated systems, little attention is paid on their suitability for snowmelt‐dominated systems. Current publishing practice in regional‐scale studies is to omit BF and BFI uncertainty evaluation or sensitivity analysis. Instead, “standard” and “previously recommended” parameterizations are transferred from rainfall/BF to snowmelt‐dominated systems. We believe that this practice should be abandoned. First, we demonstrate explicitly that the three most popular heuristic automated BF separation methods—Lyne–Hollick and Eckhardt recursive digital filters, and the U.K. Institute of Hydrology smoothed minima method—produce a wide range of annual BF and BFI estimates due to parameter sensitivity during the annual snowmelt period. Then, we propose a solution for cases when BF and BFI calibration is not possible, namely excluding the snowmelt‐dominated period from the analysis. We developed an automated filtering procedure, which divides the hydrograph into pre‐snowbelt, post‐snowmelt, and snowmelt periods. The filter was tested successfully on 218 continuous water years of daily streamflow data for four snowmelt‐dominated headwater watersheds located in Wyoming (60–837 km2). The post‐snowmelt BF and BFI metric can be used for characterizing summer low‐flows for snowmelt‐dominated systems. Our results show that post‐snowmelt BF and BFI sensitivity to filter parameterization is reduced compared with the sensitivity of annual BF and BFI and is similar to the sensitivity levels for rainfall/baseflow systems.  相似文献   
32.
Around the world, long-term changes in the timing and magnitude of streamflow are testing the ability of large managed water resource systems constructed in the 20th century to continue to meet objectives in the 21st century. Streamflow records for unregulated rivers upstream of reservoirs can be combined with records downstream of reservoirs using a paired-watershed framework and concepts of water resource system performance to assess how reservoir management has responded to long-term change. Using publicly available data, this study quantified how the intra-annual timing of inflows and outflows of 25 major reservoirs has shifted, how management has responded, and how this has influenced reliability and vulnerability of the water resource system in the 668,000 km2 Columbia River basin from 1950 to 2012. Reservoir inflows increased slightly in early spring and declined in late spring to early fall, but reservoir outflows increased in late summer from 1950 to 2012. Average inflows to reservoirs in the low flow period exceeded outflows in the1950s, but inflows are now less than outflows. Reservoirs have increased hedging, that is, they have stored more water during the spring, in order to meet the widening gap between inflows and outflows during the summer low flow period. For a given level of reliability (the fraction of time flow targets were met), vulnerability (the maximum departure from the flow target) was greater during periods with lower than average inflows. Thus, the water management system in this large river basin has adjusted to multi-decade trends of declining inflows, but vulnerability, that is, the potential for excess releases in spring and shortfalls in summer, has increased. This study demonstrates the value of combining publicly available historical data on streamflow with concepts from paired-watershed analyses and metrics of water resource performance to detect, evaluate, and manage water resource systems in large river basins.  相似文献   
33.
34.
The fill–spill of surface depressions (wetlands) results in intermittent surface water connectivity between wetlands in the prairie wetland region of North America. Dynamic connectivity between wetlands results in dynamic contributing areas for runoff. However, the effect of fill–spill and the resultant variable or dynamic basin contributing area has largely been disregarded in the hydrological community. Long‐term field observations recorded at the St. Denis National Wildlife Area, Saskatchewan, allow fill–spill in the basin to be identified and quantified. Along with historical water‐level observations dating back to 1968, recent data collected for the basin include snow surveys, surface water survey and production of a light detection and ranging–derived digital elevation model. Data collection for the basin includes both wet and dry antecedent basin conditions during spring runoff events. A surface water survey at St. Denis in 2006 reveals a disconnected channel network during the spring freshet runoff event. Rather than 100% of the basin contributing runoff to the outlet, which most hydrological models assume, only approximately 39% of the basin contributes to the outlet. Anthropogenic features, such as culverts and roads, were found to influence the extent and spatial distribution of contributing areas in the basin. Historical pond depth records illustrate the effect of antecedent basin conditions on fill–spill and basin contributing area. A large pond at the outlet of the St. Denis basin, which only receives local runoff during dry years when upstream surface storage has not been satisfied, has pond runoff volumes that increase by a factor of 20 or more during wet years when upstream antecedent basin surface storage is satisfied and basin‐wide runoff contributes to the pond. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
35.
For the period from 1958 to 1996, streamflow characteristics of a highly urbanized watershed were compared with less‐urbanized and non‐urbanized watersheds within a 20 000 km2 region in the vicinity of Atlanta, Georgia: in the Piedmont and Blue Ridge physiographic provinces of the southeastern USA. Water levels in several wells completed in surficial and crystalline‐rock aquifers were also evaluated. Data were analysed for seven US Geological Survey (USGS) stream gauges, 17 National Weather Service rain gauges, and five USGS monitoring wells. Annual runoff coefficients (RCs; runoff as a fractional percentage of precipitation) for the urban stream (Peachtree Creek) were not significantly greater than for the less‐urbanized watersheds. The RCs for some streams were similar to others and the similar streams were grouped according to location. The RCs decreased from the higher elevation and higher relief watersheds to the lower elevation and lower relief watersheds: values were 0·54 for the two Blue Ridge streams, 0·37 for the four middle Piedmont streams (near Atlanta), and 0·28 for a southern Piedmont stream. For the 25 largest stormflows, the peak flows for Peachtree Creek were 30% to 100% greater than peak flows for the other streams. The storm recession period for the urban stream was 1–2 days less than that for the other streams and the recession was characterized by a 2‐day storm recession constant that was, on average, 40 to 100% greater, i.e. streamflow decreased more rapidly than for the other streams. Baseflow recession constants ranged from 35 to 40% lower for Peachtree Creek than for the other streams; this is attributed to lower evapotranspiration losses, which result in a smaller change in groundwater storage than in the less‐urbanized watersheds. Low flow of Peachtree Creek ranged from 25 to 35% less than the other streams, possibly the result of decreased infiltration caused by the more efficient routing of stormwater and the paving of groundwater recharge areas. The timing of daily or monthly groundwater‐level fluctuations was similar annually in each well, reflecting the seasonal recharge. Although water‐level monitoring only began in the 1980s for the two urban wells, water levels displayed a notable decline compared with non‐urban wells since then; this is attributed to decreased groundwater recharge in the urban watersheds due to increased imperviousness and related rapid storm runoff. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
36.
A generalized watershed model was used to evaluate the effects of global climate changes on the hydrologic responses of freshwater ecosystems. The Enhanced Trickle Down (ETD) model was applied to W-3 watershed located near Danville, Vermont. Eight years of field data was used to perform model calibration and verification and the results were presented in Nikolaidis et al., (1993). Results from the Goddard Institute for Space Studies (GISS) and the Geophysical Fluid Dynamics Laboratory (GFDL) general circulation models which simulated the doubling of present day atmospheric CO2 scenarios were used to perform the hydrologic simulations for the W-3 watershed. The results indicate that the W-3 watershed will experience increases in annual evapotranspiration and decreases in annual outflow and soil moisture. Stochastic models that simulate collective statistical properties of meteorological time series were developed to generate data to drive the ETD model in a Monte-Carlo fashion for quantification of the uncertainty in the model predictions due to input time series. This coupled deterministic and stochastic model was used to generate probable scenarios of future hydrology of the W-3 watershed. The predicted evapotranspiration and soil moisture under doubling present day atmospheric CO2 scenarios exceed the present day uncertainty due to input time series by a factor greater than 2. The results indicate that the hydrologic response of the W-3 watershed will be significantly different than its present day response. The Enhanced Trickle Down model can be used to evaluate land surface feedbacks and assessing water quantity management in the event of climate change.  相似文献   
37.
This work relates to the debate on the fossil organic carbon (FOC) input in modern environments and its possible implication for the carbon cycle, and suggests the use of Rock‐Eval 6 pyrolysis as a relevant tool for tracking FOC in such environments. Considering that such a delivery is mainly due to supergene processes affecting the continental surface, we studied organic matter in different reservoirs such as bedrocks, alterites, soils and rivers in two experimental catchments at Draix (Alpes de Haute Provence, France). Samples were subjected to geochemical (Rock‐Eval 6 pyrolysis) investigations and artificial bacterial degradations. After comparing the geochemical fingerprint of samples, geochemical markers of FOC were defined and tracked in the different reservoirs. Our results confirm the contribution of FOC in modern soils and rivers and display the various influences of weathering and erosional processes on the fate of FOC during its exchange between these pools. In addition, the contrasting behaviour of these markers upon the supergene processes has also highlighted the refractory or labile characters of the fossil organic matter (FOM). Bedrock to river fluxes, controlled by gully erosion, are characterized by a qualitative and quantitative preservation of FOM. Bedrock to alterite fluxes, governed by chemical weathering, are characterized by FOC mineralization without qualitative changes in deeper alterites. Alterite to soils fluxes, controlled by (bio)chemical weathering, are characterized by strong FOC mineralization and qualitative changes of FOM. Thus weathering and erosional processes induce different FOM evolution and affect the fate of FOC towards the global carbon cycle. In this study, gully erosion would involve maintenance of an ancient sink for the global carbon cycle, while (bio)chemical processes provide a source of CO2. Finally, this study suggests that Rock‐Eval 6 pyrolysis can be considered as a relevant tool for tracking FOC in modern environments. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
38.
Determination of soil heat flux in a tibetan short-grass prairie   总被引:11,自引:1,他引:10  
Soil heat flux is examined using a new method considering soil thermal conduction and convection processes. Using this method, we determine that soil heat fluxes owing to soil thermal conduction and convection were significant for the Naqu site in the summer of 1998. Experimental analyses of the surface energy balance are given.  相似文献   
39.
The influence of landscape spatial structure on ecological processes has recently received much attention. Comparisons are made here between the spatial structure of grasslands, and active and extirpated Gunnison's prairie dog (Cynomys gunnisoni Hollister) towns at the Petrified Forest National Park, Arizona, U.S.A. The spatial structure of bare ground was quatified using a box-counting technique to extract landscape fractal dimensions, D, and bare-ground patch size. These landscapes are fractal, and active prairie dog towns had higher fractal dimensions, i.e. a more homogeneous spatial structure as D approaches 2, than inactive towns, which had higher fractal dimensions than unmodified grasslands. Morisita's index suggested that shrubs were more randomly distributed on prairie dog towns and more aggregated on grassland habitats. The different spatial distributions of bare ground and shrubs have the potential to influence resource distributions between these habitats for both prairie dogs and other fauna. Consequently, the presence of prairie dogs in these grasslands increases grassland landscape heterogeneity at large spatial scales, potentially enhancing beta diversity.  相似文献   
40.
基于小波变换和GRNN神经网络的黑河出山径流模型   总被引:14,自引:6,他引:8  
对黑河山区流域月降水量和气温做Harr小波变换,并作为GRNN神经网络的输入,对黑河出山径流进行模拟和预测验证,效果较好。应用全球变化成果,在不同的气候情景下,对黑河出山径流进行预测。结果表明,黑河出山径流在未来一段时间内,径流量会有一定程度的增加,最终会减少。但模型对气温反应不敏感。去除气温重构的细节系数后,气温也成为一个敏感因素,但径流量却随气温的增加而增加。可推断,引进Haar小波变换的GRNN神经网络模型可应用于径流量对气温不敏感的流域。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号