首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2240篇
  免费   431篇
  国内免费   281篇
测绘学   98篇
大气科学   54篇
地球物理   662篇
地质学   1173篇
海洋学   115篇
天文学   10篇
综合类   100篇
自然地理   740篇
  2024年   16篇
  2023年   43篇
  2022年   83篇
  2021年   91篇
  2020年   100篇
  2019年   96篇
  2018年   64篇
  2017年   78篇
  2016年   102篇
  2015年   86篇
  2014年   110篇
  2013年   120篇
  2012年   110篇
  2011年   115篇
  2010年   104篇
  2009年   124篇
  2008年   156篇
  2007年   127篇
  2006年   109篇
  2005年   96篇
  2004年   128篇
  2003年   101篇
  2002年   89篇
  2001年   83篇
  2000年   101篇
  1999年   73篇
  1998年   72篇
  1997年   67篇
  1996年   44篇
  1995年   45篇
  1994年   46篇
  1993年   38篇
  1992年   44篇
  1991年   34篇
  1990年   22篇
  1989年   17篇
  1988年   10篇
  1987年   1篇
  1986年   4篇
  1985年   1篇
  1981年   1篇
  1975年   1篇
排序方式: 共有2952条查询结果,搜索用时 15 毫秒
941.
Similarity between heat and water vapor turbulent transport in the Atmospheric Surface Layer has been the basis of many engineering models to calculate surface fluxes, including the widely applied Bowen ratio equation, for a long time. Modernly, it is best understood within the context of Monin‐Obkhov Similarity Theory (MOST). In this work we study similarity between temperature and humidity, the Bowen ratio, and turbulent mass and heat transfer coefficients over a tropical lake in Brazil (Furnas Lake). The analysis was partly based on the concept of ‘Surface flux numbers’ recently proposed to diagnose scalar similarity, and considered wind directions and flux footprints. A period of 50 days of 30‐min. micrometeorological runs was used. Several cases of dissimilar temperature‐humidity behavior were found in the data. Both footprint extent and an aggregate temperature‐humidity Surface flux number turned out to be insufficient to diagnose these situations, but separate flux numbers for each scalar were able to diagnose their individual conformity to MOST. Overall, temperature displayed consistently larger relative variances and fluxes in comparison with humidity. The results highlight the need of careful analysis when measurements are made at sites close to land, when flux footprints may extend over there, indicating the possibility of advection effects. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
942.
Lake eutrophication is a large and growing problem in many parts of the world, commonly due to anthropogenic sources of nutrients. Improved quantification of nutrient inputs is required to address this problem, including better determination of exchanges between groundwater and lakes. This first of a two‐part review provides a brief history of the evolution of the study of groundwater exchange with lakes, followed by a listing of the most commonly used methods for quantifying this exchange. Rates of exchange between lakes and groundwater compiled from the literature are statistically summarized for both exfiltration (flow from groundwater to a lake) and infiltration (flow from a lake to groundwater), including per cent contribution of groundwater to lake‐water budgets. Reported rates of exchange between groundwater and lakes span more than five orders of magnitude. Median exfiltration is 0.74 cm/day, and median infiltration is 0.60 cm/day. Exfiltration ranges from near 0% to 94% of input terms in lake‐water budgets, and infiltration ranges from near 0% to 91% of loss terms. Median values for exfiltration and infiltration as percentages of input and loss terms of lake‐water budgets are 25% and 35%, respectively. Quantification of the groundwater term is somewhat method dependent, indicating that calculating the groundwater component with multiple methods can provide a better understanding of the accuracy of estimates. The importance of exfiltration to a lake budget ranges widely for lakes less than about 100 ha in area but generally decreases with increasing lake area, particularly for lakes that exceed 100 ha in area. No such relation is evident for lakes where infiltration occurs, perhaps because of the smaller sample size. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
943.
In this study, data from MODIS land surface temperature product level 3 (MOD11A2) were used to investigate the spatiotemporal variation of Eurasian lakes water surface temperature (LSWT) from 2001 to 2015, and to examine the most influencing factors of that variation. The temperature of most lakes in the dry climate zone and in the equatorial climatic zone varied from 17 to 31°C and from 23 to 27°C, respectively. LSWTs in the warm temperate and cold climatic zones were in the range of 20 to 27°C and −0.6 and 17°C, respectively. The average day time LSWT in the polar climate zone was −0.71°C in the summer. Lakes in high latitude and in the Tibetan Plateau displayed low LSWT, ranging from −11 to 26°C during the night time. Large spatial variations of diurnal temperature difference (DTD) were observed in lakes across Eurasia. However, variations in DTDs were small in lakes located in high latitude and in tropical rainforest regions. The shallow lakes showed a rapid response of LSWT to solar and atmospheric forcing, while in the large and deep lakes, that response was sluggish. Results of this study demonstrated the applicability of remote sensing and MODIS LST products to capture the spatial–temporal variability of LSWT across continental scales, in particular for the vast wilderness areas and protected environment in high latitude regions of the world. The approach can be used in future studies examining processes and factors controlling large scale variability of LSWT.  相似文献   
944.
Thermokarst lakes cover > 20% of the landscape throughout much of the Alaskan Arctic Coastal Plain (ACP) with shallow lakes freezing solid (grounded ice) and deeper lakes maintaining perennial liquid water (floating ice). Thus, lake depth relative to maximum ice thickness (1·5–2·0 m) represents an important threshold that impacts permafrost, aquatic habitat, and potentially geomorphic and hydrologic behaviour. We studied coupled hydrogeomorphic processes of 13 lakes representing a depth gradient across this threshold of maximum ice thickness by analysing remotely sensed, water quality, and climatic data over a 35‐year period. Shoreline erosion rates due to permafrost degradation ranged from < 0·2 m/year in very shallow lakes (0·4 m) up to 1·8 m/year in the deepest lakes (2·6 m). This pattern of thermokarst expansion masked detection of lake hydrologic change using remotely sensed imagery except for the shallowest lakes with stable shorelines. Changes in the surface area of these shallow lakes tracked interannual variation in precipitation minus evaporation (P ? EL) with periods of full and nearly dry basins. Shorter‐term (2004–2008) specific conductance data indicated a drying pattern across lakes of all depths consistent with the long‐term record for only shallow lakes. Our analysis suggests that grounded‐ice lakes are ice‐free on average 37 days longer than floating‐ice lakes resulting in a longer period of evaporative loss and more frequent negative P ? EL. These results suggest divergent hydrogeomorphic responses to a changing Arctic climate depending on the threshold created by water depth relative to maximum ice thickness in ACP lakes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
945.
946.
947.
948.
High‐altitude inland lakes in High Mountain Asia (HMA) are key indicators to climate change and variability as a result of mostly closed watersheds and minimal disturbance by human activities. However, examination of the spatial and temporal pattern of lake changes, especially for water‐level variations, is usually limited by poor accessibility of most lakes. Recently, satellite altimeters have demonstrated their potential to monitor water level changes of terrestrial water bodies including lakes and rivers. By combining multiple satellite altimetry data provided by the Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS) and Geoscience Laser Altimeter System (GLAS) instrument on the NASA Ice, Cloud and land Elevation satellite (ICESat), this study examined water level changes of typical lakes in HMA at a longer timescale (in the 1990s and 2000s) compared with earlier studies on Tibetan lakes. Cross‐evaluation of the radar altimetry data from LEGOS and laser altimetry data from ICESat/GLAS shows that they were in good agreement in depicting inter‐annual, seasonal and abrupt changes of lake level. The long‐term altimetry measurements reveal that water‐level changes of the 18 lakes showed remarkable spatial and temporal patterns that were characterized by different trends, onsets of rapid rises and magnitudes of inter‐annual variations for different lakes. During the study period, lakes in the central and northern HMA (15 lakes) showed a general growth tendency, while lakes in South Tibet (three lakes) showed significant shrinking tendency. Lakes in Central Tibet experienced rapid and stable water‐level rises around mid‐1990s followed by slowing growth rates after 2006. In contrast, the water‐level rises of lakes in the northern and north‐eastern Tibetan Plateau were characterized by abrupt increases in specific years rather than gradual growth. Meteorological data based on station observations indicate that the annual changes of water level showed strongly correlated with precipitation and evaporation but may not evidently related to the glacier melting induced by global warming. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
949.
Yuji Ito  Kazuro Momii 《水文研究》2015,29(9):2232-2242
Although few reports have described long‐term continuous anoxia in aquatic systems, Lake Ikeda in Japan experienced such conditions in the hypolimnion from 1990 to 2010. The present study aimed to assess temporal fluctuations in the lake's thermal stability from 1978 to 2011 to understand the influence of regional climate change on hypolimnetic anoxia in this lake. Because complete vertical mixing, which supplies dissolved oxygen (DO) to the hypolimnion, potentially occurs on February, we calculated the Schmidt stability index (S) in February and compared it with hypolimnetic DO dynamics. Vertical water temperature profiles were calculated using a one‐dimensional model, and calculated temperatures and meteorological data were used to analyse annual fluctuations in water temperatures, thermocline depth, meteorological variables and S. We estimated that mean annual air and volume‐weighted water temperatures increased by 0.028 and 0.033 °C year?1, respectively, from 1978 to 2011. Between 1986 and 1990, S and water temperature increased abruptly, probably due to a large upwards trend in air temperature (+0.239 °C year?1). We hypothesize that a mixing regime that lacked overturn took effect at this time and that this regime lasted until 2011, when S was particularly small. These results demonstrate that abrupt climate warming in the late 1980s likely triggered the termination of complete mixing and caused the 21‐year period of successive anoxia in Lake Ikeda. We conclude that the lake response to a rapid shift in regional climate conditions was a key factor in changing the hypolimnetic water environment and that thermal stability in winter is a critical environmental factor controlling the mixing regime and anoxic conditions in deep lakes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
950.
罗布泊位于塔里木盆地东端,地处欧亚大陆深腹地,罗北凹地则是罗布泊东北部的一个次级凹地。通过对罗北凹地LDK01深孔沉积物粒度、磁化率和地球化学的分析,并结合沉积物的岩性、盐类矿物形态特征和和组合类型、构造背景,对罗布泊地区第四纪成钾环境的阶段性变化规律进行探讨。研究表明,罗布泊地区早更新世以来依次发育了河流相、三角洲相、湖泊相-风成相等沉积体系,并呈现出明显快速的湖相推进和退缩交替的频繁变化,指示盐湖演化是干湿气候周期变化和湖盆周围山区淡水周期补给共同作用结果。第四纪时期罗北凹地发展并最终形成塔里木"高山深盆"中最深的次级凹地地貌,这是青藏高原隆升导致的向北挤压的必然结果,大地构造和环境的变化直接控制了罗布泊盐湖的构造演化和沉积体系的转变。罗布泊盐湖的演化大致可分为三个阶段:第一阶段为断陷阶段,早更新世以来主要沉积淡水河流湖泊相陆源碎屑物;第二阶段为坳陷阶段,中更新世中期发育膏岩湖相,以石膏等硫酸盐析出为主要特征;第三阶段为萎缩阶段,进入晚更新世,大量盐湖相钙芒硝沉积至全新世时期石盐等氯化物析出;上述三个阶段构成一个完整蒸发沉积构造旋回并于最终阶段中形成了超大型的钾盐矿床。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号