首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1046篇
  免费   95篇
  国内免费   16篇
地球物理   817篇
地质学   151篇
海洋学   10篇
综合类   35篇
自然地理   144篇
  2024年   1篇
  2023年   2篇
  2022年   5篇
  2021年   22篇
  2020年   22篇
  2019年   4篇
  2018年   12篇
  2017年   9篇
  2016年   10篇
  2015年   12篇
  2014年   17篇
  2013年   26篇
  2012年   17篇
  2011年   15篇
  2010年   20篇
  2009年   35篇
  2008年   32篇
  2007年   62篇
  2006年   55篇
  2005年   68篇
  2004年   63篇
  2003年   51篇
  2002年   52篇
  2001年   53篇
  2000年   66篇
  1999年   54篇
  1998年   45篇
  1997年   45篇
  1996年   46篇
  1995年   46篇
  1994年   44篇
  1993年   31篇
  1992年   27篇
  1991年   21篇
  1990年   11篇
  1989年   20篇
  1988年   14篇
  1987年   6篇
  1986年   6篇
  1984年   6篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1954年   1篇
排序方式: 共有1157条查询结果,搜索用时 31 毫秒
991.
熊章强 《地震研究》2003,26(4):367-371
以疏勒河断裂带中段及北山地区遥感图像解译资料为基础,通过对该地区重力场深部构造特征、地震活动特征以及活动性构造的应力状态、发震力学条件的分析,对北山岩体进行了地质稳定性评价,认为疏勒河断裂及其北山岩体是地壳稳定性较好的地区。  相似文献   
992.
993.
994.
995.
M Persaud  O.A Pfiffner   《Tectonophysics》2004,385(1-4):59-84
Post-glacial tectonic faults in the eastern Swiss Alps occur as single lineaments, clusters of faults or extensive fault zones consisting of several individual faults aligned along the same trend. The orientation of the faults reflects the underlying lithology and the pre-existing structures (joints, pervasive foliations) within these lithologies. Most post-glacially formed faults in the area around Chur, which undergoes active surface uplift of 1.6 mm/year, trend E–W and cut across Alpine and glacial features such as active screes and moraines. Additionally, there are NNW and ENE striking faults reactivating pervasive Alpine foliations and shear zones. Based on a comparison with the nodal planes of recent earthquakes, E–W striking faults are interpreted as active faults. Because of very short rupture lengths and mismatches of fault location with earthquake distribution, magnitude and abundance, the faults are considered to be secondary faults due to earthquake shaking, cumulative deformation in post- or interseismic periods or creep, and not primary earthquake-related faults. The maximum of recent surface uplift rates coincides with the youngest cooling of the rocks according to apatite fission-track data and is therefore a long-lived feature that extends well into pre-glacial times. Isostatic rebound owing to overthickened crust or to melting of glacial overburden cannot explain the observed surface uplift pattern. Rather, the faults, earthquakes and surface uplift patterns suggest that the Alps are deforming under active compression and that the Aar massif basement uplift is still active in response to ongoing collision.  相似文献   
996.
997.
998.
999.
A systematic test of time-to-failure analysis   总被引:7,自引:0,他引:7  
Time-to-failure analysis is a technique for predicting earthquakes in which a failure function is fit to a time-series of accumulated Benioff strain. Benioff strain is computed from regional seismicity in areas that may produce a large earthquake. We have tested the technique by fitting two functions, a power law proposed by Bufe & Varnes (1993) and a log-periodic function proposed by Sornette & Sammis (1995). We compared predictions from the two time-to-failure models to observed activity and to predicted levels of activity based upon the Poisson model. Likelihood ratios show that the most successful model is Poisson, with the simple Poisson model four times as likely to be correct as the best time-to-failure model. The best time-failure model is a blend of 90 per cent Poisson and 10 per cent log-periodic predictions. We tested the accuracy of the error estimates produced by the standard least-squares fitter and found greater accuracy for fits of the simple power law than for fits of the more complicated log-periodic function. The least-squares fitter underestimates the true error in time-to-failure functions because the error estimates are based upon linearized versions of the functions being fitted.  相似文献   
1000.
The classification of earthquakes at White Island volcano, New Zealand, has been revised to address problems in existing classification schemes, to better reflect new data and to try to focus more on source processes. Seismicity generated by the direct involvement of magmatic or hydrothermal fluids are referred to as volcanic, and that generated by fault movement in response to stresses caused by those fluids, regional stresses, thermal effects and so on are referred to as volcano-tectonic. Spasmodic bursts form a separate category, as we have insufficient information to classify them as volcanic or volcano-tectonic. Volcanic seismicity is divided into short-duration, long-period volcanic earthquakes, long-duration volcanic earthquakes, and harmonic- and non-harmonic volcanic tremor, while volcano-tectonic seismicity is divided into shallow and deep volcano-tectonic earthquakes. Harmonic volcanic tremor is related to sub-surface intrusive processes, while non-harmonic volcanic tremor originates close to active craters at shallow depth, and usually occurs during eruptive activity. Short-duration, long-period volcanic earthquakes come from a single source close to the active craters, but originate deeper than non-harmonic volcanic tremor, and are not related to eruptive activity. Long-duration volcanic earthquakes often accompany larger discrete eruptions. The waveform of these events consists of an initial low-frequency part from a deep source, and a later cigar-shaped part of mixed frequencies from a shallow crater source.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号