首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   8篇
  国内免费   2篇
大气科学   2篇
地球物理   34篇
地质学   10篇
海洋学   2篇
综合类   2篇
自然地理   5篇
  2024年   1篇
  2023年   1篇
  2021年   4篇
  2020年   7篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2014年   3篇
  2013年   4篇
  2012年   4篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
排序方式: 共有55条查询结果,搜索用时 29 毫秒
21.
Forest biomass reductions in overgrown forests have the potential to provide hydrologic benefits in the form of improved forest health and increased streamflow production in water-limited systems. Biomass reductions may also alter evaporation. These changes are generated when water that previously would have been transpired or evaporated from the canopy of the removed vegetation is transferred to transpiration of the remaining vegetation, streamflow, and/or non-canopy evaporation. In this study, we combined a new vegetation-change water-balance approach with lumped hydrologic modelling outputs to examine the effects of forest biomass reductions on transpiration of the remaining vegetation and streamflow in California's Sierra Nevada. We found that on average, 102 mm and 263 mm (8.0% and 20.6% of mean annual precipitation [MAP]) of water were made available following 20% and 50% forest biomass-reduction scenarios, respectively. This water was then partitioned to both streamflow and transpiration of the remaining forest, but to varying degrees depending on post-biomass-reduction precipitation levels and forest biomass-reduction intensity. During dry periods, most of the water (approximately 200 mm [15.7% on MAP] for the 50% biomass-reduction scenario) was partitioned to transpiration of the remaining trees, while less than 50 mm (3.9% on MAP) was partitioned to streamflow. This increase in transpiration during dry periods would likely help trees maintain forest productivity and resistance to drought. During wet periods, the hydrologic benefits of forest biomass reductions shifted to streamflow (200 mm [15.7% on MAP]) and away from transpiration (less than 150 mm [11.8% on MAP]) as the remaining trees became less water stressed. We also found that streamflow benefits per unit of forest biomass reduction increased with biomass-reduction intensity, whereas transpiration benefits decreased. By accounting for changes in vegetation, the vegetation-change water balance developed in this study provided an improved assessment of watershed-scale forest health benefits associated with forest biomass reductions.  相似文献   
22.
The seasonal snowmelt period is a critical component of the hydrologic cycle for many mountainous areas. Changes in the timing and rate of snowmelt as a result of physical hydrologic flow paths, such as longitudinal intra-snowpack flow paths, can have strong implications on the partitioning of meltwater amongst streamflow, groundwater recharge, and soil moisture storage. However, intra-snowpack flow paths are highly spatially and temporally variable and thus difficult to observe. This study utilizes new methods to non-destructively observe spatio-temporal changes in the liquid water content of snow in combination with plot experiments to address the research question: What is the scale of influence that intra-snowpack flow paths have on the downslope movement of liquid water during snowmelt across an elevational gradient? This research took place in northern Colorado with study plots spanning from the rain-snow transition zone up to the high alpine. Results indicate an increasing scale of influence from intra-snowpack flow paths with elevation, showing higher hillslope connectivity producing larger intra-snowpack contributing areas for meltwater accumulation, quantified as the upslope contributing area required to produce observed changes in liquid water content from melt rate estimates. The total effective intra-snowpack contributing area of accumulating liquid water was found to be 17, 6, and 0 m2 for the above tree line, near tree line, and below tree line plots, respectively. Dye tracer experiments show capillary and permeability barriers result in increased number and thickness of intra-snowpack flow paths at higher elevations. We additionally utilized aerial photogrammetry in combination with ground penetrating radar surveys to investigate the role of this hydrologic process at the small watershed scale. Results here indicate that intra-snowpack flow paths have influence beyond the plot scale, impacting the storage and transmission of liquid water within the snowpack at the small watershed scale.  相似文献   
23.
Stable isotope exchange processes between solid and liquid phases of a natural melting snowpack are investigated in detail by separating the liquid water from snow grains at different depths of the snowpack and collecting the bottom discharge using a lysimeter. In the melting–freezing mass exchange process between the two phases, the theoretical slope of the δD? δ18O line for newly refrozen ice is calculated to be nearly that of pore water. However, based on observations of the isotopic evolution and snow grain coarsening of the snowpack, it is demonstrated that the slope of the δD? δ18O line for newly refrozen ice is equal to that of the original ice. This is proved to be due to preferential water flow in the snowpack, which leads to relatively more deuterium and less oxygen‐18 in the mobile water than the immobile water because of the kinetic effect. Higher mass exchange rate in the mobile water region results in excess deuterium in the bulk refrozen ice, compared with the fractionation of uniform fractionation factors and exchange rate. This effect, which is termed the ‘preferential exchange rate effect of isotopic fractionation’, is shown to be larger in the lower part than the upper part of the snowpack. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
24.
NOAA16卫星积雪识别和参数提取   总被引:17,自引:2,他引:15  
延昊 《冰川冻土》2004,26(3):369-373
通过对积雪、地物和云进行光谱分析,指出传统的NOAA-AVHRR可见光和近红外波段进行云雪识别存在困难,而雪在红外波段的低反射性特点是区分云雪的一个可行途径.利用NOAA16气象卫星新增的1.6μm红外波段,对中国北方冬季的卫星积雪图象进行识别,结果显示,云雪可以准确区分.同时,提出了利用AVHRR资料估算积雪面积、积雪深度和积雪时间的方法,并对积雪深度进行了精度检验.  相似文献   
25.
积雪融雪过程中水、热、溶质耦合运移规律的研究进展   总被引:3,自引:0,他引:3  
大气污染的加剧,形成大量的酸性雨,在冬季则以酸性雪的形式出现.酸性雪对土壤环境、水环境及生态环境的影响已经引起世界性的关注,而对于积雪、融雪过程中水、热、溶质耦合运移规律的研究是评价和预测这些影响的理论基础.在查阅大量中外相关文献的基础上,对该领域的研究历史、发展现状和尚待解决的问题进行了综述.  相似文献   
26.
Snow accumulation in mountain headwater basins is a major water source, particularly in semi‐arid environments such as southern Alberta where water resources are stressed and snowmelt supplies more than 80% of downstream runoff. Relationships between landscape predictor variables and snow water equivalent (SWE) were quantified by combining field and LiDar measurements with classification and regression tree analysis over two winter seasons (2010 and 2011) in a small, montane watershed. 2010 was a below average snow accumulation year, while 2011 was well above normal. In both the field and regression tree data, elevation was the dominant control on snow distribution in both years, although snow distribution was driven by melt processes in 2010 and accumulation processes in 2011. The importance of solar radiation and wind exposure was represented in the regression trees in both years. The regression trees also noted the lower importance of canopy closure, slope, and aspect, which was not observed in the field data. This technique could provide an additional method of forecasting annual water supply from melting snow. However, further research is required to address the lack of data collected above treeline, to provide a full‐basin estimate of SWE. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
27.
Snow temperature is a major component of many physical processes in a snowpack. The temperature and the change in temperature across a layer have a dominant effect on physical properties of snow grains as well as its hardness, strength, and failure resistance. In this study, temperature and snow cover thickness were measured during the snow season of 2007–2008 in 11 elevation classes and in three different sampling locations, one in an open area and two under different forest canopy covers for each class along Kartalkaya road, Bolu. Each sampling site was visited 44 times to collect data including snow depth, snow surface temperature, ground temperature, and temperature within snowpack at 20‐cm intervals. Seven different models are developed to determine snowpack temperature variations under forest canopy covers and in an open area with different leaf area index values. All models were performed using a multilayer perceptron (MP) method for the Bolu–Kartalkaya area, Turkey. MP approach constitutes a standard form of neural network modeling and can modify two‐layer linear perceptron methods using three and more layers. The ability of MP is to handle complex nonlinear interactions, which ease the natural process of modeling. This method can overcome complex computations using neuron networks, and they can easily nonlinearly link input and output variables. The predictive errors are determined on the basis of mean absolute error and mean square error criteria. The Nash–Sutcliffe sufficiency score showing compliance between observed and predicted values is also calculated. According to the mean absolute error, the mean square error, and the Nash–Sutcliffe sufficiency score criteria, the predictive errors are within reasonable error intervals, justifying the use of the developed MP models for engineering applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
28.
The Gurbantonggut Desert, China, is an ideal site for study of sublimation from the snowpack because there are sparse vegetation and simple topography, and the wind speed is not large enough to blow snow into the atmosphere from the snowpack. Daily sublimation was measured by manual snow lysimeters at 8:00, and an automatic weather station was deployed at the top of a stout longitudinal dune chain at the southeastern edge of the desert. It is shown that on a daily scale, there was an extremely significant no‐intercept linear relationship between the measured sublimation and that calculated by the bulk aerodynamic method, although the former was only 83.8% of the latter. It is also demonstrated that ?10°C and 2 m/s were the thresholds where the sublimation varied with the air temperature and the wind speed. When these two thresholds were exceeded, the sublimation accelerated. However, the air temperature and the wind speed at 2 m above the ground averaged ?17.2°C and 1.3 m/s, respectively, and the percentages of the time when the air temperature was below ?10 °C and the wind speed was below 2 m/s were 76.9% and 85.1%, respectively. As a result, the rate of sublimation was quite low most of the time, and the thin snowpack remained in a quasi‐static state until the melt stage started. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
29.
Space‐borne passive microwave snow water equivalent (SWE) retrieval algorithms are attractive for continuous SWE monitoring over large mountainous areas. The performance of three SWE retrieval algorithms, which were considered relevant for operational purposes, was examined for each month over the Colorado River Basin. In addition, statistical post‐processing was tested as a means of improving the SWE estimates from each algorithm. The evaluation started with the so‐called Chang equation, which was a pioneer algorithm and is still used in practice. Successive attempts were then made to improve the algorithm's performance through the calibration of the equation's coefficient and through the inclusion of brightness temperature data from various frequency channels. The Chang equation consistently underestimated SWE with average bias between 30 mm in November and more than 300 mm in April and root mean square error (RMSE) exceeding 500 mm at many locations in April. The statistical post‐processing effectively removed the bias and reduced the RMSE by half for all the months. When the Chang equation's coefficients were calibrated at each site, biases were reduced by approximately 85%, and RMSE was reduced by 40%–50%. Finally, the multiple channel equations produced unbiased SWE estimates with RMSEs 50%–60% of those from the Chang equation. However, the statistical post‐processing did not reduce RMSE for both calibrated algorithms. The last algorithm produced the most reliable estimates for at‐site analysis, but its skill deteriorated when analyses were performed over larger areal extents; therefore, it is only recommended for SWE monitoring over smaller areas. For larger areas, the calibrated Chang equation is desirable because it only requires interpolations of a calibrated coefficient, which was spatially coherent. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
30.
The search to improve protective techniques against natural phenomena such as snow avalanches continues to use classic methods to calculate flexible structures. This paper deals with a new method for designing avalanche protection nets; this method is based on a coupled analysis of both the net structure and the snow mantel using a coupled Lagrangian‐discrete approach. This has led to the development of computational software so that avalanche nets can be easily designed. This tool provides for the evolving forces acting on several parts of the net as a function of the snow situation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号