首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9823篇
  免费   1394篇
  国内免费   2973篇
测绘学   340篇
大气科学   572篇
地球物理   2424篇
地质学   7420篇
海洋学   463篇
天文学   49篇
综合类   412篇
自然地理   2510篇
  2024年   45篇
  2023年   129篇
  2022年   341篇
  2021年   434篇
  2020年   579篇
  2019年   569篇
  2018年   566篇
  2017年   500篇
  2016年   550篇
  2015年   591篇
  2014年   816篇
  2013年   1015篇
  2012年   773篇
  2011年   653篇
  2010年   579篇
  2009年   631篇
  2008年   614篇
  2007年   618篇
  2006年   709篇
  2005年   526篇
  2004年   493篇
  2003年   423篇
  2002年   401篇
  2001年   309篇
  2000年   254篇
  1999年   201篇
  1998年   182篇
  1997年   152篇
  1996年   144篇
  1995年   77篇
  1994年   68篇
  1993年   53篇
  1992年   53篇
  1991年   37篇
  1990年   26篇
  1989年   21篇
  1988年   16篇
  1987年   9篇
  1986年   8篇
  1985年   6篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1973年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
杨志勇  朱平  蒋瑞宾 《气象》1998,24(4):3-10
建立了一个研究大气、植被、土壤相互作用的传播模式。模式是由多层大气模式、多层土壤模式和植被模式通过界面上能量、水汽传输平衡方程耦合而成。对植被和土壤的不同性质,进行了一系列的数值试验。结果表明,不同的植被覆盖以及降水等因子会对大气、植被、地表界面上能量、水汽传输以及热状态产生显著的影响。此模式还可以耦合进中尺度模式用以研究非均匀区域陆面过程和大气的相互作用。  相似文献   
962.
辛玉善  杨锡勤  宋秀焕 《气象》1998,24(11):50-53
以黑龙江省850农场的资料进行分析,5至6月份小麦出苗、拔节至抽穗阶段,经常出现干旱,是需水关键期,对产量影响极大。所以利用麦田土壤湿度资料,建立经验公式,对土壤墒情进行预测预报,从而获得最佳喷灌时间及喷灌量,为节约用水、计划用水提供了可靠依据。  相似文献   
963.
甘肃中部雨养农业区土壤水分预测模式的研究   总被引:5,自引:0,他引:5  
采用联合国粮农组织(FAO)最新推荐的计算农田蒸散量的彭曼-蒙蒂斯公式(FAO-PM),选取甘肃中部雨养农业区定西1980~1995年的常规气象资料和1990~1995年固定地段0~100cm的土壤湿度资料,对水平衡和Y.M安格斯坦土壤水分预测模式进行对比分析,认为后者适宜于本地区的土壤水分预测,并分析了误差原因  相似文献   
964.
广武新灌区春小麦土壤水分变化规律研究   总被引:1,自引:0,他引:1  
通过对广武新灌区春小麦土壤水分的垂直变化、季节变化和时空变化的研究,将广武新灌区0~100cm土层划分为活跃层、贮水层、阻隔层和无效水分层,为寻找新灌区节水途径奠定了基础。  相似文献   
965.
966.
Water stored in soils, in part, controls vegetation productivity and the duration of growing seasons in wildland ecosystems. Soil water is the dynamic product of precipitation, evapotranspiration and soil properties, all of which vary across complex terrain making it challenging to decipher the specific controls that soil water has on growing season dynamics. We assess how soil water use by plants varies across elevations and aspects in the Dry Creek Experimental Watershed in southwest Idaho, USA, a mountainous, semiarid catchment that spans low elevation rain to high elevation snow regimes. We compare trends in soil water and soil temperature with corresponding trends in insolation, precipitation and vegetation productivity, and we observe trends in the timing, rate and duration of soil water extraction by plants across ranges in elevation and aspect. The initiation of growth-supporting conditions, indicated by soil warming, occurs 58 days earlier at lower, compared with higher, elevations. However, growth-supporting conditions also end earlier at lower elevations due to the onset of soil water depletion 29 days earlier than at higher elevations. A corresponding shift in peak NDVI timing occurs 61 days earlier at lower elevations. Differences in timing also occur with aspect, with most threshold timings varying by 14–30 days for paired north- and south-facing sites at similar elevations. While net primary productivity nearly doubles at higher elevations, the duration of the warm-wet period of active water use does not vary systematically with elevation. Instead, the greater ecosystem productivity is related to increased soil water storage capacity, which supports faster soil water use and growth rates near the summer solstice and peak insolation. Larger soil water storage does not appear to extend the duration of the growing season, but rather supports higher growing season intensity when wet-warm soil conditions align with high insolation. These observations highlight the influence of soil water storage capacity in dictating ecological function in these semiarid steppe climatic regimes.  相似文献   
967.
Soil moisture influences many hydrologic applications including agriculture, land management and flood prediction. Most remote‐sensing methods that estimate soil moisture produce coarse resolution patterns, so methods are required to downscale such patterns to the resolutions required by these applications (e.g. 10‐ to 30‐m grid cells). At such resolutions, topography is known to affect soil moisture patterns. Although methods have been proposed to downscale soil moisture based on topography, they usually require the availability of past high‐resolution soil moisture patterns from the application region. The objective of this article is to determine whether a single topographic‐based downscaling method can be used at multiple locations without relying on detailed local observations. The evaluated downscaling method is developed on the basis of empirical orthogonal function (EOF) analysis of space–time soil moisture data at a reference catchment. The most important EOFs are then estimated from topographic attributes, and the associated expansion coefficients are estimated on the basis of the spatial‐average soil moisture. To test the portability of this EOF‐based method, it is developed separately using four data sets (Tarrawarra, Tarrawarra 2, Cache la Poudre and Satellite Station), and the relationships that are derived from these data sets to estimate the EOFs and expansion coefficients are compared. In addition, each of these downscaling methods is applied not only for the catchment where it was developed but also to the other three catchments. The results suggest that the EOF downscaling method performs well for the location where it is developed, but its performance degrades when applied to other catchments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
968.
The curve number (CN) method is widely used for rainfall–runoff modelling in continuous hydrologic simulation models. A sound continuous soil moisture accounting procedure is necessary for models using the CN method. For shallow soils and soils with low storage, the existing methods have limitations in their ability to reproduce the observed runoff. Therefore, a simple one‐parameter model based on the Soil Conservation Society CN procedure is developed for use in continuous hydrologic simulation. The sensitivity of the model parameter to runoff predictions was also analysed. In addition, the behaviour of the procedure developed and the existing continuous soil moisture accounting procedure used in hydrologic models, in combination with Penman–Monteith and Hargreaves evapotranspiration (ET) methods was also analysed. The new CN methodology, its behaviour and the sensitivity of the depletion coefficient (model parameter) were tested in four United States Geological Survey defined eight‐digit watersheds in different water resources regions of the USA using the SWAT model. In addition to easy parameterization for calibration, the one‐parameter model developed performed adequately in predicting runoff. When tested for shallow soils, the parameter is found to be very sensitive to surface runoff and subsurface flow and less sensitive to ET. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
969.
A fine‐grained slope that exhibits slow movement rates was investigated to understand how geohydrological processes contribute to a consecutive development of mass movements in the Vorarlberg Alps, Austria. For that purpose intensive hydrometeorological, hydrogeological and geotechnical observations as well as surveying of surface movement rates were conducted during 1998–2001. Subsurface water dynamics at the creeping slope turned out to be dominated by a three‐dimensional pressure system. The pressure reaction is triggered by fast infiltration of surface water and subsequent lateral water flow in the south‐western part of the hillslope. The related pressure signal was shown to propagate further downhill, causing fast reactions of the piezometric head at 5·5 m depth on a daily time scale. The observed pressure reactions might belong to a temporary hillslope water body that extends further downhill. The related buoyancy forces could be one of the driving forces for the mass movement. A physically based hydrological model was adopted to model simultaneously surface and subsurface water dynamics including evapotranspiration and runoff production. It was possible to reproduce surface runoff and observed pressure reactions in principle. However, as soil hydraulic functions were only estimated on pedotransfer functions, a quantitative comparison between observed and simulated subsurface dynamics is not feasible. Nevertheless, the results suggest that it is possible to reconstruct important spatial structures based on sparse observations in the field which allow reasonable simulations with a physically based hydrological model. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
970.
This paper examines the potential of least‐square support vector machine (LSVVM) in the prediction of settlement of shallow foundation on cohesionless soil. In LSSVM, Vapnik's ε‐insensitive loss function has been replaced by a cost function that corresponds to a form of ridge regression. The LSSVM involves equality instead of inequality constraints and works with a least‐squares cost function. The five input variables used for the LSSVM for the prediction of settlement are footing width (B), footing length (L), footing net applied pressure (P), average standard penetration test value (N) and footing embedment depth (d). Comparison between LSSVM and some of the traditional interpretation methods are also presented. LSSVM has been used to compute error bar. The results presented in this paper clearly highlight that the LSSVM is a robust tool for prediction of settlement of shallow foundation on cohesionless soil. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号