首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2503篇
  免费   424篇
  国内免费   607篇
测绘学   64篇
大气科学   46篇
地球物理   799篇
地质学   2117篇
海洋学   202篇
天文学   4篇
综合类   108篇
自然地理   194篇
  2024年   9篇
  2023年   39篇
  2022年   88篇
  2021年   91篇
  2020年   83篇
  2019年   124篇
  2018年   98篇
  2017年   90篇
  2016年   84篇
  2015年   99篇
  2014年   118篇
  2013年   149篇
  2012年   164篇
  2011年   151篇
  2010年   153篇
  2009年   183篇
  2008年   180篇
  2007年   175篇
  2006年   164篇
  2005年   155篇
  2004年   155篇
  2003年   146篇
  2002年   93篇
  2001年   95篇
  2000年   90篇
  1999年   96篇
  1998年   91篇
  1997年   71篇
  1996年   73篇
  1995年   45篇
  1994年   33篇
  1993年   39篇
  1992年   30篇
  1991年   14篇
  1990年   19篇
  1989年   9篇
  1988年   3篇
  1987年   13篇
  1986年   7篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1973年   1篇
  1954年   1篇
排序方式: 共有3534条查询结果,搜索用时 140 毫秒
31.
从区域构造入手,对单侯井田构造进行分析,认为井田内断层发育以走向NW—NE、落差≤5m的小型正断层为主,且主要分布于大中型构造的两侧.特别是在其弧形转折带附近往往形成“羽”状雁列的小断层密集带。断层垂向上多分布于4—7号煤层之间的厚煤层发育区,其严重破坏了煤层的连续及完整性,是影响煤层开采的最主要因素之一。井田褶皱构造相对不发育,以短轴小型背、向斜为主,均属缓波状褶曲,对煤层的开采无影响或影响较小。根据井田地质构造发育程度,对其进行预测及分区评价:井田东部为强烈的构造挤压带,以发育走向NW-近EW—NE向的大型逆掩断层为特点,构造最复杂;井田西北部是相对较轻微的构造挤压带,以发育走向NE向的逆断层为特征,构造较复杂;井田南部以发育近SN或NNW向正断层为主,构造相对简单。评价结果对矿井设计及采区与工作面布置有一定的指导作用。  相似文献   
32.
利用井田勘探资料及野外地质资料,对井田构造基本形态、断层发育特征及其分布规律进行分析,总结出该井田的构造模式、构造成因、构造组合特征及其演化规律。研究认为井田的构造格局是多期构造运动综合作用、相互叠加的结果。井田构造形态为一略有起伏的平缓单斜,区内NE向的高角度正断层,多属张扭性,EW向构造早于NE向构造,构造复合部位较复杂,其余区段较简单;伸展构造是井田构造的主体样式,这一结论对下一步继续勘探及煤矿开采具有指导意义。  相似文献   
33.
邢东矿井位于太行山隆起带与华北沉陷带的过渡带,通过区域构造应力-应变场分析,本区先后经历了由挤压-拉张的变形过程,变形强度由弱到强。海西期构造应力影响较弱,印支期-中燕山期构造应力作用较为强烈,形成了大量的挤压结构面和压缩构造.燕山晚期-喜山期是构造形成的最终阶段,以拉张伸展变形为主,现今的多数正断层的断裂结构面仍保存有先期的挤压结构面特征。区内构造以断裂构造为主要形式,断层组合形式多样,这些构造形成期次不同,北西向断裂对北东向断裂具有限制作用。  相似文献   
34.
基于天池煤矿地质勘探资料,结合区域构造背景研究了矿井地质构造特征及形成机制。天池煤矿构造属简单构造,地层总体呈走向北东、倾向北西的单斜构造,矿井内褶皱发育程度较低,断层以正断层为主,其次为低角度逆掩断层。陷落柱分布较为杂乱,成群出现,常见于褶皱轴部。自三叠纪末期开始一直受到区域构造活动的控制作用,印支期受SN向的挤压,形成了一些近EW向的构造;燕山期经历两期NWW--SEE向挤压使井田内地层及煤层主体呈NE走向;喜山早期的NE—SW向挤压,导致NE向断层的性质发生转变;上新世开始表现为区域上的伸展作用。  相似文献   
35.
The Wattkopftunnel, near Ettlingen (Nordschwarzwald), drives through the eastern margin of the Rheingraben. The tunnel passes cenozoic and mesozoic sediments. Early quarternary and tertiary beds are situated west of the main thrust of the Rheingraben. Fossil record indicates upper Oligocene age (Chatt) for parts of the tertiary sediments. At the eastern border of the Rheingraben, wedges of jurassic and middle triassic series are squeezed. East of the Rheingraben the tunnel drives in the lower triassic Bausandstein. The eastern margin of the Rheingraben was investigated in detail during tunneling. Faults of the Rheingraben margin are distributed in an 130 meter wide fault zone in the tunnel. Total stratigraphic separation by the normal faults reaches more than 2 000 meters. The cenozoic sequence suffered synsedimentary to early diagenetic deformation, while the mesozoic series are characterized by ruptural deformation. The fault- and joint system is directed in the rheinische Richtung (SSW-NNE). East of the Rheingraben a second direction occur, running parallel to the lower Albtal (W-E).
  相似文献   
36.
A seismic nonlinear time-history analysis was made for four-, six-, and eight-storey reinforced concrete buildings. These buildings were made as three-dimensional space frame structures with shear walls in both orthogonal directions. They have five bays with 4.8 m spacing each in the horizontal direction, and three bays with 4.2 m spacing each in the transversal direction. The frames were designed according to the Jordanian Seismic Code of practice for Seismic Zones 4, 3, 2, and 1 as proposed for Jordan by several authors. Time-history analysis was made using the El Centro (N-S) earthquake record of May 1940 as an actual earthquake excitation. The response reduction factor (R) that primarily consists of two factors that are the ductility reduction (Rµ) and the overstrength (), is obtained. It has been seen that the seismic zoning has a slight effect on the ductility reduction factor for different buildings, since it ranges from Zone 4 to Zone 1 as 2.37 to 2.52, 1.72 to 1.78, and 1.14 to 1.18 for four-, six-, and eight-storey buildings, respectively. Moreover, it is observed that, for different buildings and different seismic zones, the ductility reduction factor (Rµ) is slightly different from the system ductility factor (µ) especially for higher values of µ (i.e., Rµ µ). The response reduction factor, called overstrength (), was evaluated. The overstrength factor was found to vary with seismic zones (Z) , number of stories, and design gravity loads. However, the dependency on seismic zones was the strongest. The average overstrength of these buildings in Zones 4 and 1 was 2.61 and 6.94, respectively. The overstrength increased as the number of storeys decreased: overstrength of a four-storey building was higher than an eight-storey building by 36% in Zone 4, and 39% in Zone 1. Furthermore, buildings of the three heights had an average overstrength 165.9% higher in Zone 1 than in Zone 4. These observations have a significant implications for the seismic design codes which currently do not take into account the variation of the response reduction factor, R (i.e., ductility reduction factor times overstrength).  相似文献   
37.
Various Oligocene formations from NE Greece (ignimbrites from the Medousa area, rhyolites from Zagradenia, granodiorites from Elatia) show discordant paleomagnetic signatures, in each case indicating small cw (clockwise) rotation and also inclination flattening. Marls from Pithion were partly remagnetized in a present-day field. Samples that contain ancient magnetization components also indicate small cw rotation and inclination flattening. However, the magnetization of andesites from Peplos reflects a considerably larger rotation, likely owing to local tectonics. In the context of previous work in the area, these results are used to propose a subdivision of NE Greece into four structural zones of distinctive rotational behaviour (from east to west): sites in zone 1, east of the Kavala-Xanthi-Komotini fault (KXK), show various cw and ccw (counterclockwise) rotation angles owing to complex kinematics resulting from the interaction of the KXK and the north-Anatolian fault zone. However, zone 2, between the KXK and the Strymon valley, is structurally homogeneous ( 10° cw rotation). The paleomagnetic signature of the Vertiskos massif (zone 3) implies a larger (> 30°) cw rotation, whereas sites in the Vardar basin (zone 4) contain a paleomagnetic signature similar to that of zone 2. This suggests a motion of the Vertiscos massif, a meta-ophiolitic nappe, relative to underlying strata. Indeed, zones 2 and 4 may be parts of the same structural unit which underlies this nappe.  相似文献   
38.
Regularity of structural patterns can be connected to planetary disjunctive systems (paleosystems). A computerized universal model of these systems should be developed that may be helpful to predict unknown localities of mineral resources controlled by tectonic processes. The specific character of tectonic phenomena is to be respected in geomathematical models. Some suggestions for applications are given.  相似文献   
39.
Two different goals in fitting straight lines to data are to estimate a true linear relation (physical law) and to predict values of the dependent variable with the smallest possible error. Regarding the first goal, a Monte Carlo study indicated that the structural-analysis (SA) method of fitting straight lines to data is superior to the ordinary least-squares (OLS) method for estimating true straight-line relations. Number of data points, slope and intercept of the true relation, and variances of the errors associated with the independent (X) and dependent (Y) variables influence the degree of agreement. For example, differences between the two line-fitting methods decrease as error in X becomes small relative to error in Y. Regarding the second goal—predicting the dependent variable—OLS is better than SA. Again, the difference diminishes as X takes on less error relative to Y. With respect to estimation of slope and intercept and prediction of Y, agreement between Monte Carlo results and large-sample theory was very good for sample sizes of 100, and fair to good for sample sizes of 20. The procedures and error measures are illustrated with two geologic examples.  相似文献   
40.
The Plattengneis shear zone is a 250–600 m thick, flat lying, Cretaceous, eclogite facies, mylonitic shear zone, with north-over-south transport direction, that is exposed over almost 1000 km2 in the Koralpe region along the eastern margin of the Alps. Although the shear zone is one of the largest in the Alps, its role in the Eoalpine metamorphic evolution and the subsequent exhumation of the region, remain enigmatic and its large-scale geometry is not well understood. The outcrop pattern suggests that the shear zone is made up of a single sheet that is folded into a series of open syn- and antiforms with wavelengths of about 10 km. Eclogite bodies occur above, within and below the shear zone and there is no metamorphic grade change across the shear zone. In the south, the fold axes strike east–west and plunge shallowly to the east. In the north, the fold axes are oriented in north–south direction and form a dome shaped structure of the shear zone. Total shortening during this late stage warping event was of the order of 5%. Indirect evidence constrains this folding event to have occurred between 80 and 50 Ma and the fold geometry implies that the final exhumation in the Koralpe occurred somewhat later than further north. Interestingly, the shear zone appears to strike out of the topography in the south and dip into the topography in the north, so that north of the shear zone only hanging-wall rocks are exposed and south of it only foot-wall rocks. Possibilities for the geometric relationship of the Plattengneis shear zone with the surrounding south dipping detachments are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号