首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1052篇
  免费   272篇
  国内免费   27篇
测绘学   12篇
大气科学   15篇
地球物理   882篇
地质学   221篇
海洋学   81篇
天文学   7篇
综合类   11篇
自然地理   122篇
  2024年   13篇
  2023年   5篇
  2022年   7篇
  2021年   63篇
  2020年   83篇
  2019年   37篇
  2018年   55篇
  2017年   52篇
  2016年   50篇
  2015年   49篇
  2014年   63篇
  2013年   121篇
  2012年   37篇
  2011年   42篇
  2010年   43篇
  2009年   32篇
  2008年   74篇
  2007年   54篇
  2006年   63篇
  2005年   32篇
  2004年   37篇
  2003年   39篇
  2002年   40篇
  2001年   24篇
  2000年   38篇
  1999年   27篇
  1998年   25篇
  1997年   26篇
  1996年   28篇
  1995年   8篇
  1994年   11篇
  1993年   13篇
  1992年   12篇
  1991年   4篇
  1990年   10篇
  1989年   7篇
  1988年   3篇
  1987年   8篇
  1986年   1篇
  1985年   4篇
  1984年   2篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1971年   2篇
排序方式: 共有1351条查询结果,搜索用时 93 毫秒
71.
A technique has been developed for predicting the irregular advance pattern often observed as water spreads on the surface of the ground. The technique is a combination of stochastic sketching, potential theory, probability theory, and a mass balance equation in the form of an advance equation. The technique can be used on flat as well as sloping terrain and addresses any form of obstructions or constraints to the flow of the water. The stochastic sketching portion of the technique uses cellular automata with transition probability movement rules to sketch the dynamics of small volume water elements in the defined environment. Randomly selected small volume flow path segments are computed and plotted. The envelope of these segments defines the wetted area and the advance front. Several examples are presented showing the patterns produced for various situations.  相似文献   
72.
As is well known, a complete stochastic solution of the stochastic differential equation governing saturated groundwater flow leads to an infinite hierarchy of equations in terms of higher-order moments. Perturbation techniques are commonly used to close this hierarchy, using power-series expansions. These methods are applied by truncating the series after a finite number of terms, and products of random gradients of conductivity and head potential are neglected. Uncertainty regarding the number or terms required to yield a sufficiently accurate result is a significant drawback with the application of power series-based perturbation methods for such problems. Low-order series truncation may be incapable of representing fundamental characteristics of flow and can lead to physically unreasonable and inaccurate solutions of the stochastic flow equation. To support this argument, one-dimensional, steady-state, saturated groundwater flow is examined, for the case of a spatially distributed hydraulic conductivity field. An ordinary power-series perturbation method is used to approximate the mean head, using second-order statistics to characterize the conductivity field. Then an interactive perturbation approach is introduced, which yields improved results compared to low-order, power-series perturbation methods for situations where strong interactions exist between terms in such approximations. The interactive perturbation concept is further developed using Feynman-type diagrams and graph theory, which reduce the original stochastic flow problem to a closed set of equations for the mean and the covariance functions. Both theoretical and practical advantages of diagrammatic solutions are discussed; these include the study of bounded domains and large fluctuations.  相似文献   
73.
ABSTRACT

Experimental work in hydrology is in decline. Based on a community survey, Blume et al. showed that the hydrological community associates experimental work with greater risks. One of the main issues with experimental work is the higher chance of negative results (defined here as when the expected or wanted result was not observed despite careful experimental design, planning and execution), resulting in a longer and more difficult publishing process. Reporting on negative results would avoid putting time and resources into repeating experiments that lead to negative results, and give experimental hydrologists the scientific recognition they deserve. With this commentary, we propose four potential solutions to encourage reporting on negative results, which might contribute to a stimulation of experimental hydrology.  相似文献   
74.
ABSTRACT

The sharing of data and collection of new data are both essential, but they are not inherently complementary. When data are openly available, researchers may be motivated to use those data rather than collect more because field work has costs and risks. The competitive advantage to those who do not put resources towards fieldwork may discourage field hydrology. Allocating efforts towards generating field data, which benefits hydrological sciences, is not necessarily best for individual hydrologists, especially in an era of open data. The objective of this work is to open a conversation on whether individuals’ best interests may contrast with the community’s desire for new observations. If the community wants new field observations, there is a need to consider the shifting balance of incentives and disincentives for pursuing field studies in hydrology.  相似文献   
75.
ABSTRACT

We thank Allen and Berghuijs for continuing the discussion on field hydrology and data sharing and discuss two incentives to promote data collection and sharing in hydrological sciences: a collaborative attitude and additional funding to make data publicly available.  相似文献   
76.
ABSTRACT

Advances in open data science serve large-scale model developments and, subsequently, hydroclimate services. Local river flow observations are key in hydrology but data sharing remains limited due to unclear quality, or to political, economic or infrastructure reasons. This paper provides methods for quality checking openly accessible river-flow time series. Availability, outliers, homogeneity and trends were assessed in 21 586 time series from 13 data providers worldwide. We found a decrease in data availability since the 1980s, scarce open information in southern Asia, the Middle East and North and Central Africa, and significant river-flow trends in Africa, Australia, southwest Europe and Southeast Asia. We distinguish numerical outliers from high-flow peaks, and integrate all investigated quality characteristics in a composite indicator. We stress the need to maintain existing gauging networks, and highlight opportunities in extending existing global databases, understanding drivers for trends and inhomogeneity, and in innovative acquisition methods in data-scarce regions.  相似文献   
77.
ABSTRACT

Environmental flow standards are a management tool that can help to protect the ecosystem services sustained by rivers. Although environmental flow requirements can be assessed using a variety of methods, most of these methods require establishing relationships between flow and habitat of species of concern. Here, we conducted a synthesis of past flow–ecology studies in the southeast USA. For each state or interstate river basin, we used the published data to determine the flow metrics that resulted in the greatest changes in ecological metrics, and the ecological metrics that were most sensitive to hydrologic alteration. The flow metrics that were most important in preserving ecological metrics were high-flow duration and frequency, 3-day maximum and minimum, and number of reversals. The ecological metrics most sensitive to hydrologic alteration were mostly related to presence or absence of key indicator species.  相似文献   
78.
Enclosure of some portion of one or more natural stream-drainage basins by superposition of a rectangle on a map of drainage network results in fragmentation of the natural basins into a set of disjoint channel networks. Each of these may have some channel links and forks of the natural network plus truncated links intersected by the enclosure boundary. The topological properties of the network elements in the enclosure are used to set up a model of random network patterns, in which the number of disjoint channel networks is expressed as a function of the number of links and forks in the enclosures. This function is shown to be a multiplicative constant times the square root of the number of links or forks. Empirical data on square and rectangular enclosures of several sizes from the Inez (Kentucky)Quadrangle map showed that the predicted multiplicative constants do not agree with observation, but that the square-root relation seems to hold at least to a first approximation. The models thus can be used as a norm against which deviations of real-world enclosures from network pattern randomness can be studied.  相似文献   
79.
Stratigraphic shifts in the oxygen isotopic (18O) and trace element (Mg and Sr) composition of biogenic carbonate from tropical lake sediment cores are often interpreted as a proxy record of the changing relation between evaporation and precipitation (E/P). Holocene 18O and Mg and Sr records from Lakes Salpetén and Petén Itzá, Guatemala were apparently affected by drainage basin vegetation changes that influenced watershed hydrology, thereby confounding paleoclimatic interpretations. Oxygen isotope values and trace element concentrations in the two lowland lakes were greatest between ~ 9000 and 6800 14C-yr BP, suggesting relatively high E/P, but pollen data indicate moist conditions and extensive forest cover in the early Holocene. The discrepancy between pollen- and geochemically-inferred climate conditions may be reconciled if the high early Holocene 18O and trace element values were controlled principally by low surface runoff and groundwater flow to the lake, rather than high E/P. Dense forest cover in the early Holocene would have increased evapotranspiration and soil moisture storage, thereby reducing delivery of meteoric water to the lakes. Carbonate 18O and Mg and Sr decreased between 7200 and 3500 14C-yr BP in Lake Salpetén and between 6800 and 5000 14C-yr BP in Lake Petén Itzá. This decline coincided with palynologically documented forest loss that may have led to increased surface and groundwater flow to the lakes. In Lake Salpetén, minimum 18O values (i.e., high lake levels) occurred between 3500 and 1800 14C-yr BP. Relatively high lake levels were confirmed by 14C-dated aquatic gastropods from subaerial soil profiles ~ 1.0–7.5 m above present lake stage. High lake levels were a consequence of lower E/P and/or greater surface runoff and groundwater inflow caused by human-induced deforestation.  相似文献   
80.
Increased accuracy in measuring temporal variations in the Earth's gravity field allow inprinciple the use of gravity observations to deduce subsurface water-mass changes. This canbe with respect to a small area, or as a larger spatial average of water mass change usinggravity observations from low-altitude satellites, such as the forthcoming GRACE mission.At both scales, there is a need to validate gravity-based estimates against field recordings ofactual subsurface water-mass variations. In practice, this could prove difficult because thespatial integral of all water-storage change components can be subject to considerable fieldmeasurement error. An alternative approach to the validation process is proposed by whichsuitable geological formations are utilized as giant weighing devices to directly measure area-integratedwater-mass changes. The existence of such natural geological weighing lysimetersis demonstrated using observations from a replicated experimental site in New Zealand. Sitesof this type could be used to verify water-storage change estimates derived from sensitiveground surface gravity instrumentation. In addition, geological lysimeters could be used tomake local checks on the accuracy of any estimated regional water-mass time series, whichis proposed for satellite calibration. The land area weighed by a geological lysimeter increaseswith formation depth and it is speculated that recordings made at oil well depth may allowdirect monitoring of subsurface water mass changes at the regional scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号