首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   216篇
  免费   22篇
  国内免费   40篇
测绘学   1篇
地球物理   68篇
地质学   13篇
海洋学   172篇
综合类   11篇
自然地理   13篇
  2023年   3篇
  2022年   11篇
  2021年   4篇
  2020年   8篇
  2019年   15篇
  2018年   8篇
  2017年   10篇
  2016年   17篇
  2015年   20篇
  2014年   7篇
  2013年   20篇
  2011年   9篇
  2010年   8篇
  2009年   11篇
  2008年   21篇
  2007年   2篇
  2006年   14篇
  2005年   14篇
  2004年   5篇
  2003年   5篇
  2002年   5篇
  2001年   3篇
  2000年   15篇
  1999年   10篇
  1998年   8篇
  1997年   5篇
  1996年   5篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
排序方式: 共有278条查询结果,搜索用时 15 毫秒
81.
82.
This study attempts to assemble and summarize existing information in order to build a general representation of the trophic interactions within the shallow coastal ecosystem of Sri Lanka. A multispecific ecosystem-based approach on trophic relationships and their possible variations was performed using ECOPATH. Thirty-nine functional groups were considered representing all trophic levels in the food web.  相似文献   
83.
叶翔  李炎  黄邦钦  胡毅  陈坚 《海洋学报》2008,30(2):102-110
利用2004年夏季台湾海峡南部海域的现场激光粒度仪剖面测量数据,运用海洋食物链的粒径谱理论,分析了悬浮颗粒物的Sheldon谱图和正态化谱图的剖面分布精细结构。横跨台湾海峡沿岸及浅滩外斜上升流的A和B两断面Sheldon粒径谱类型相近,正态化谱图的斜率r的范围从-0.79到-0.65,在明显高于寡营养海域的水平上波动。斜率r的高值带或高变幅带,在上升流系高叶绿素带及叶绿素最大层的周边或前端的呈斑状分布。海洋食物链的粒径谱分析结果支持关于台湾海峡南部上升流生态系高生产力、短食物链和高营养转换效率的宏观认识,并深化对营养转换效率分布精细结构的了解。现场激光粒度仪可发展为探索海洋食物链时空分布精细结构的常备传感器。  相似文献   
84.
厦门东海域鱼类食物网研究   总被引:8,自引:0,他引:8  
本文分析了厦门东海域58种鱼类的营养关系.根据对它们的食性分析,并依其食料生物的生态类群,将厦门东海域的鱼类食性类型分为:浮游生物食性、底栖生物食性、游泳动物食性、浮游生物和底栖生物、底栖生物和游泳动物食性等5种.该海域鱼类的营养级可分为4级:杂食性鱼类、低级肉食性鱼类、中级肉食性鱼类和高级肉食性鱼类,其中低级肉食性鱼类占优势,为63.79%.本文还分析了厦门东海域鱼类的食物网及其能量流动途径,并提出合理利用和保护厦门东海域鱼类资源的建议.  相似文献   
85.
This study has determined the ways in which the density, number of species, species composition and trophic structure of free-living nematode assemblages in the subtidal waters of a large southern hemisphere microtidal estuary change spatially and seasonally, and has explored whether those four biotic characteristics are related to certain environmental factors. Based on data derived from samples collected seasonally at 12 sites throughout the estuary, the densities and number of species of nematodes decreased progressively with distance from estuary mouth, to reach a minimum at sites where salinities were most variable, and then increased slightly in the uppermost part of the estuary where salinities were least. Densities were also generally greatest in spring, due largely to increases in the abundance of epistrate-grazing species at this time and thus when the amount of primary food (microphytobenthos) peaked. The spatial distribution of the composition of the nematode assemblages was closely correlated with salinity and, to a lesser extent, grain-size composition and amount of particulate organic material (%POM) in the sediment. Although species composition changed sequentially along the estuary, the change was particularly pronounced between sites above and below the area where salinities started to decline markedly and become more variable and %POM increased markedly. This reflected, in particular, far greater abundances of Spirinia parasitifera at the six downstream sites and of Theristus sp. 1 at the six sites further upstream. Species composition underwent pronounced seasonal cyclical changes at all sites, presumably reflecting interspecific differences in the timing of peak reproduction and thus of recruitment. The trophic structure of the nematode assemblages changed both spatially and temporally in relation to the relative abundance of different food sources. Thus, for example, non-selective deposit feeders, such as Theristus sp. 1, dominated samples in the upper estuary, where %POM was by far the greatest, and was rare or absent at downstream sites. Conversely, epistrate grazers, such as species of the Chromadoridae, were most abundant at downstream sites in spring, when the density of the microphytobenthos reached its maximum.  相似文献   
86.
Stable carbon isotopes were used to determine the contribution of emergent demersal zooplankton to the diet of the scyphozoan jellyfish Catostylus mosaicus at Smiths Lake, New South Wales, Australia. A preliminary study in 2004 indicated that there was no difference in the δ13C of ectodermal tissue and mesoglea of the medusae. In 2005, medusae and zooplankton present during the day and night were sampled and isotopic signatures were modelled using IsoSource. Modelling indicated that: (1) mollusc veligers and copepods sampled during the day contributed <13% of the carbon to the jellyfish; (2) copepods sampled at night contributed up to 25%; and (3) the large, emergent decapod Lucifer sp. contributed 88–94%. We hypothesised, therefore, that medusae derive most of their carbon from emergent species of zooplankton. In 2006, sampling done in 2005 was repeated three times over a period of 4 weeks to measure short-term temporal variation in isotopic signatures of medusae and zooplankton, and emergent demersal zooplankton was specifically sampled using emergence traps. Short-term temporal variation in isotopic signatures was observed for some taxa, however, actual variations were small (<1.5‰) and the values of medusae and zooplankton remained consistent relative to each other. IsoSource modelling revealed that mysid shrimp and emergent copepods together contributed 79–100% of the carbon to the jellyfish, and that the maximum possible contribution of daytime copepods and molluscs was only 22%. Jellyfish apparently derive most of their carbon from emergent zooplankton and by capturing small numbers of relatively large taxa, such as Lucifer sp. or mysid shrimp. Small but abundantly captured zooplankton (such as mollusc veligers) contribute only minor amounts of carbon. Jellyfish have a major role in the transfer of carbon between benthic and pelagic food webs in coastal systems.  相似文献   
87.
The effects of long‐term experimental nutrient enrichment on nematode trophic guilds and morphometrics were examined in intertidal saltmarsh creeks of Plum Island Estuary, Massachusetts, USA. Nematodes from the marsh‐edge Spartina alterniflora habitat in a reference creek (n = 3300) were sampled annually and compared with nematodes (n = 3100) from a creek in which nitrate and phosphate loading rates were increased approximately 10–15× for 6 years. Trophic guilds in both creeks were dominated by epistrate (diatom) feeders and predators, and natural temporal variability across years was high. However, after 4 years of nutrient enrichment, a shift in the nutrient‐enriched creek was detected from a dominance of epistrate feeders to an increased proportion of predators, even though neither the benthic microalgae biomass nor the total density of nematodes was affected by fertilization. Nematodes also became longer, and longer relative to their diameter over time with nutrient enrichment because of the shift in trophic structure as short‐stout epistrate feeders were replaced with longer, more slender predators. These changes may have been directly related to nutrient enrichment effects on benthic algae or indirectly to the many other effects of enrichments on ecosystem structure or function. Our research indicates that nutrient enrichment alters the nematode community and this alternation may directly or indirectly affect the response of benthic algae to nutrient enrichment and as well as other ecosystem services.  相似文献   
88.
Fauna species living in seagrass meadows depend on different food sources, with seagrasses often being marginally important for higher trophic levels. To determine the food web of a mixed-species tropical seagrass meadow in Sulawesi, Indonesia, we analyzed the stable isotope (δ13C and δ15N) signatures of primary producers, particulate organic matter (POM) and fauna species. In addition invertebrates, both infauna and macrobenthic, and fish densities were examined to identify the important species in the meadow. The aims of this study were to identify the main food sources of fauna species by comparing isotopic signatures of different primary producers and fauna, and to estimate qualitatively the importance of seagrass material in the food web. Phytoplankton and water column POM were the most depleted primary food sources for δ13C (range −23.1 to −19.6‰), but no fauna species depended only on these sources for carbon. Epiphytes and Sargassum sp. had intermediate δ13C values (−14.2 to −11.9‰). Sea urchins, gastropods and certain fish species were the main species assimilating this material. Seagrasses and sedimentary POM had the least depleted values (−11.5 to −5.7‰). Between the five seagrass species significant differences in δ13C were measured. The small species Halophila ovalis and Halodule uninervis were most depleted, the largest species Enhalus acoroides was least depleted, while Thalassia hemprichii and Cymodocea rotundata had intermediate values. Fourteen fauna species, accounting for 10% of the total fauna density, were shown to assimilate predominantly (>50%) seagrass material, either directly or indirectly by feeding on seagrass consumers. These species ranged from amphipods up to the benthic top predator Taeniura lymma. Besides these species, about half of the 55 fauna species analyzed had δ13C values higher than the least depleted non-seagrass source, indicating they depended at least partly for their food on seagrass material. This study shows that seagrass material is consumed by a large number of fauna species and is important for a large portion of the food web in tropical seagrass meadows.  相似文献   
89.
90.
Three cores from Traunsee were investigated and compared with respect to diatom stratigraphy concerning dating of incursions into and rate of accumulation of industrial tailings in the profundal zone.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号