首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1644篇
  免费   133篇
  国内免费   116篇
测绘学   87篇
大气科学   64篇
地球物理   357篇
地质学   303篇
海洋学   209篇
天文学   3篇
综合类   118篇
自然地理   752篇
  2024年   9篇
  2023年   36篇
  2022年   51篇
  2021年   68篇
  2020年   45篇
  2019年   75篇
  2018年   53篇
  2017年   67篇
  2016年   75篇
  2015年   81篇
  2014年   68篇
  2013年   79篇
  2012年   116篇
  2011年   124篇
  2010年   74篇
  2009年   96篇
  2008年   132篇
  2007年   96篇
  2006年   127篇
  2005年   82篇
  2004年   85篇
  2003年   68篇
  2002年   35篇
  2001年   30篇
  2000年   17篇
  1999年   18篇
  1998年   12篇
  1997年   12篇
  1996年   20篇
  1995年   4篇
  1994年   10篇
  1993年   2篇
  1992年   5篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   4篇
排序方式: 共有1893条查询结果,搜索用时 359 毫秒
51.
黑麦草在净化富营养化水的人工湿地生态工程中的作用   总被引:6,自引:0,他引:6  
在人工湿地生态工程中利用黑麦草(Lolium perenne L.)净化污水,得到了较好的效果。结果表明:利用黑麦草在冬春季节的生长,可使亚热带地区人工湿地常年运行,黑麦草在3—4月份对水体就有明显的净化作用。在春夏季节,特别在5月份黑麦草可以获得较高的生物量和N、P的积累量,因而净化贡献最大。从产草量方面考虑,延长黑麦草的生长期能获得较高的生物量;从植物体所含营养物质状况和饲用价值看,增加收割次数的黑麦草N、P含量高,饲用价值高;但从黑麦草对污水中N、P的吸收和积累量方面考虑,收割次数过高则不利于黑麦草对污水的净化及N、P的累积。从上述几方面综合考虑,在黑麦草整个生长期收割次数以2.3次为宜。  相似文献   
52.
Aquatic fungi growing on dead fragments of submerged plants   总被引:1,自引:0,他引:1  
The authors investigated the dead fragments of 22 species of submerged plants in the water from three limnological and trophical different water bodies (spring, river and pond). A total of 184 species of aquatic fungi, including 119 zoosporic and 65 conidial species were found on the fragments investigated plants. The most common fungus species were Aphanomyces laevis, Saprolegnia litoralis, Pythium rostratum (zoosporic fungi) and Acrodictys elaeidicola, Anguillospora longissima, Angulospora aquatica, Lemonniera aquatica, Mirandina corticola, Tetracladium marchalianum, Tetracladium maxiliformis, Trinacrium subtile (conidial fungi).

Most fungus species were observed on the specimens of Elodea canadensis (33 fungus species), Hippuris vulgaris f. submersa (33), Myriophyllum spicatum (34) and Potamogeton crispus (33), fewest on Ceratophyllum demersum (24), Fontinalis dalicarlica and Potamogeton nitens (each 25).

The most fungi were growing in the water from River Supraśl (107), the fewest in the water from Pond Dojlidy (99). Some aquatic fungus species were observed in the water of only one of the three water bodies – in Pond Dojlidy (30), in Spring Jaroszówka (32) and in the River Supraśl (39) species. Seventy-five species growing only on fragments of single submerged plants. A number of zoosporic and conidial species (22 and four, respectively) appeared new to Polish waters. Out of these 119 zoosporic species, some are known as parasites or necrotrophs of fish.  相似文献   

53.
植物加固路堤边坡浅层土体分析及工程应用   总被引:1,自引:0,他引:1  
在总结植物加固黄土路堤边坡浅层土体的机理之后,结合宝中铁路实际工程,对紫穗槐和柠条两种植物的加固效果进行了详细的分析。  相似文献   
54.
13C/12C and 18O/16O ratios of aragonite shells of modern land snails from the southern Great Plains of North America were measured for samples from twelve localities in a narrow east-west corridor that extended from the Flint Hills in North Central Oklahoma to the foothills of the Sangre de Cristo Mountains in Northern New Mexico, USA. Across the study area, shell δ18O values (PDB scale) ranged from −4.1‰ to 1.2‰, while δ13C values ranged from −13.2‰ to 0.0‰. δ18O values of the shell aragonite were predicted with a published, steady state, evaporative flux balance model. The predicted values differed (with one exception) by less than 1‰ from locality averages of measured δ18O values. This similarity suggests that relative humidity at the time of snail activity is an important control on the δ18O values of the aragonite and emphasizes the seasonal nature of the climatic information preserved in the shells. Correlated δ13C values of coexisting Vallonia and Gastrocopta suggest similar feeding habits and imply that these genera can provide information on variations in southern Great Plains plant ecology. Although there is considerable scatter, multispecies, transect average δ13C values of the modern aragonite shells are related to variations in the type of photosynthesis (i.e., C3, C4) in the local plant communities. The results of this study emphasize the desirability of obtaining isotope ratios representing averages of many shells in a locale to reduce possible biases associated with local variations among individuals, species, etc., and thus better represent the “neighborhood” scale temporal and/or spatial environmental variations of interest in studies of modern and ancient systems.  相似文献   
55.
基于"3S"技术的于田绿洲湿地动态变化研究   总被引:7,自引:4,他引:7  
以极端干旱区典型绿洲———于田绿洲为研究区,采用遥感(RS)、地理信息系统(GIS)和全球定位系统(GPS)相结合的方法,进行了湿地资源调查,查明了于田绿洲湿地类型、区域分布及面积,应用模型和分形理论,探讨了于田绿洲湿地的动态变化特征,并分析了其发生动态变化的原因。研究结果对于干旱区绿洲湿地的合理开发和可持续发展有着重要现实意义。  相似文献   
56.
青藏高原腹地植物碳同位素组成对环境条件的响应   总被引:7,自引:0,他引:7  
现代植物碳同位素组成是特定环境影响的结果,通过对植物碳同位素组成的研究可以揭示植物生长期环境信息。针对青藏高原腹地高寒草甸~高寒草原过渡区植被碳同位素组成进行研究;该区高山嵩草样δ13C值在-25.63‰~-27.95‰间,平均值-26.63‰;高寒草原区混合样δ13C值于-26.29‰~-27.73‰间,平均值-27.04‰。高山嵩草样δ13C值总体呈现由南东往北西方向正偏趋势,研究区北部高寒草原区混合植物样也呈现出由南向北富重碳同位素趋势。这些变化规律被认为是主要受降水环境影响的结果,而区域内降水条件的展布规律则是受高原夏季风运移方式的控制。对植物δ13C值与地理位置的回归分析表明,该区植被碳同位素组成与地理位置相关,高山嵩草样(r=0.44603,n=29,p<0.05)和混合样(r=0.8112,n=5,p<0.1)均表现出对区域降水环境条件的良好响应。据此,以该区植物δ13C值为背景,进行合理推算,拟定了研究区内干旱区和湿润区界限的位置。  相似文献   
57.
Oil sands mining in Alberta transforms the boreal landscape of forests and wetlands into open pits, tailings ponds and overburden piles. Whereas reclamation efforts have primarily focused on upland forests, rebuilding wetland systems has recently become a motivation for research. Wetland creation and sustainability in this region is complicated by the sub‐humid climate and salinity of underlying mining material. In 2012, Syncrude Canada Ltd. completed the construction of the Sandhill Fen Watershed (SFW), a 52‐ha upland‐wetland system to evaluate wetland reclamation strategies on soft tailings. SFW includes an active pumping system, upland hummocks, a fen wetland and underdrains. To evaluate the influence of management practices on the hydrology of the system, this study reports the water balance from January 2013 to December 2014, the first 2 years after commissioning. A semi‐distributed approach was taken to examine the fluxes and stores of water in uplands and lowlands. Natural and artificial inputs and outputs were measured using a series of precipitation gauges and pumps, and evapotranspiration was quantified using three eddy covariance towers. A series of near surface wells recorded water table position. Both 2013 and 2014 were normal rainfall years, with 2013 having more and 2014 less snow than normal. In 2013, inflow/outflow from pumping was the predominant hydrological fluxes, resulting in considerable variability in water table position and storage changes throughout the summer. In 2014, the artificial addition of water was negligible, yet the water table remained near the surface in lowland locations, suggesting that wetland conditions could be maintained under current conditions. Evapotranspiration rates between uplands and lowlands were similar between years and sites, ranging from 2.2 ± 1.8 to 2.5 ± 1.2 mm/day and were largely controlled by climate. These rates were less than nearby older upland systems, suggesting that water balance partitioning will change as vegetation develops. Comparison between years and with natural systems provides insight on how management practices influence hydrologic dynamics and the overall water balance of the SFW. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
58.
Reflecting internal catchment hydrological processes in hydrological models is important for accurate predictions of the impact of climate and land-use change on water resources. Characterizing these processes is however difficult and expensive due to their dynamic nature and spatio-temporal variability. Hydropedology is a relatively new discipline focusing on the synergistic integration of hydrology, soil physics and pedology. Hydropedological interpretations of soils and soil distribution can be used to characterize key hydrological processes, especially in areas with no or limited hydrometric measurements. Here we applied a hydropedological approach to reflect flowpaths through detailed routing in SWAT+ for a 157 ha catchment (Weatherley) in South Africa. We compared the hydropedological approach and a standard (no routing) approach against measured streamflow (two weirs) and soil water contents (13 locations). The catchment was treated as ‘ungauged’ and the model was not calibrated against hydrometric measurements in order to determine the direct contribution of hydropedology on modelling efficiency. Streamflow was predicted well without calibration (NSE > 0.8; R2 > 0.82) for both approaches at both weirs. The standard approach yielded slightly better streamflow predictions. The hydropedological approach resulted in considerable improvements in the simulation of soil water contents (R2 increased from 0.40 to 0.49 and PBIAS decreased from 40% to 20%). The routing capacity of SWAT+ as employed in the hydropedological approach reduced the underestimation of wetland water regimes drastically and resulted in a more accurate representation of the dominant hydrological processes in this catchment. We concluded that hydropedology can be a valuable source of ‘soft data’ to reflect internal catchment structure and processes and, potentially, for realistic calibrations in other studies, especially those conducted in areas with limited hydrometric measurements.  相似文献   
59.
Tim P. Duval 《水文研究》2019,33(11):1510-1524
Partitioning of rainfall through a forest canopy into throughfall, stemflow, and canopy interception is a critical process in the water cycle, and the contact of precipitation with vegetated surfaces leads to increased delivery of solutes to the forest floor. This study investigates the rainfall partitioning over a growing season through a temperate, riparian, mixed coniferous‐deciduous cedar swamp, an ecosystem not well studied with respect to this process. Seasonal throughfall, stemflow, and interception were 69.2%, 1.5%, and 29.3% of recorded above‐canopy precipitation, respectively. Event throughfall ranged from a low of 31.5 ± 6.8% for a small 0.8‐mm event to a high of 82.9 ± 2.4% for a large 42.7‐mm event. Rain fluxes of at least 8 mm were needed to generate stemflow from all instrumented trees. Most trees had funnelling ratios <1.0, with an exponential decrease in funnelling ratio with increasing tree size. Despite this, stand‐scale funnelling ratios averaged 2.81 ± 1.73, indicating equivalent depth of water delivered across the swamp floor by stemflow was greater than incident precipitation. Throughfall dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) averaged 26.60 ± 2.96 and 2.02 ± 0.16 mg L?1, respectively, which were ~11 and three times above‐canopy rain levels. Stemflow DOC averaged 73.33 ± 7.43 mg L?1, 35 times higher than precipitation, and TDN was 4.45 ± 0.56 mg L?1, 7.5 times higher than rain. Stemflow DOC concentration was highest from Populus balsamifera and TDN greatest from Thuja occidentalis trees. Although total below‐canopy flux of TDN increased with increasing event size, DOC flux was greatest for events 20–30 mm, suggesting a canopy storage threshold of DOC was readily diluted. In addition to documenting rainfall partitioning in a novel ecosystem, this study demonstrates the excess carbon and nitrogen delivered to riparian swamps, suggesting the assimilative capacity of these zones may be underestimated.  相似文献   
60.
Amount and composition of dissolved organic matter (DOM) were evaluated for multiple, nested stream locations in a forested watershed to investigate the role of hydrologic flow paths, wetlands and drainage scale. Sampling was performed over a 4‐year period (2008–2011) for five locations with drainage areas of 0.62, 3.5, 4.5, 12 and 79 ha. Hydrologic flow paths were characterized using an end‐member mixing model. DOM composition was determined using a suite of spectrofluorometric indices and a site‐specific parallel factor analysis model. Dissolved organic carbon (DOC), humic‐like DOM and fluorescence index were most sensitive to changes with drainage scale, whereas dissolved organic nitrogen, specific UV absorbance, Sr and protein‐like DOM were least sensitive. DOM concentrations and humic‐like DOM constituents were highest during both baseflow and stormflow for a 3.5‐ha catchment with a wetland near the catchment outlet. Whereas storm‐event concentrations of DOC and humic DOM constituents declined, the mass exports of DOC increased with increasing catchment scale. A pronounced dilution in storm‐event DOC concentration was observed at peak stream discharge for the 12‐ha drainage location, which was not as apparent at the 79‐ha scale, suggesting key differences in supply and transport of DOM. Our observations indicate that hydrologic flow paths, especially during storms, and the location and extent of wetlands in the catchment are key determinants of DOM concentration and composition. This study furthers our understanding of changes in DOM with drainage scale and the controls on DOM in headwater, forested catchments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号