首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6225篇
  免费   1144篇
  国内免费   2777篇
测绘学   75篇
大气科学   199篇
地球物理   263篇
地质学   7972篇
海洋学   847篇
天文学   50篇
综合类   421篇
自然地理   319篇
  2024年   48篇
  2023年   241篇
  2022年   265篇
  2021年   341篇
  2020年   246篇
  2019年   319篇
  2018年   253篇
  2017年   234篇
  2016年   258篇
  2015年   291篇
  2014年   504篇
  2013年   339篇
  2012年   453篇
  2011年   482篇
  2010年   341篇
  2009年   381篇
  2008年   347篇
  2007年   343篇
  2006年   503篇
  2005年   368篇
  2004年   304篇
  2003年   292篇
  2002年   299篇
  2001年   295篇
  2000年   222篇
  1999年   231篇
  1998年   233篇
  1997年   200篇
  1996年   161篇
  1995年   193篇
  1994年   178篇
  1993年   199篇
  1992年   210篇
  1991年   128篇
  1990年   107篇
  1989年   122篇
  1988年   44篇
  1987年   38篇
  1986年   20篇
  1985年   17篇
  1984年   13篇
  1983年   11篇
  1982年   8篇
  1981年   18篇
  1980年   10篇
  1979年   6篇
  1978年   9篇
  1974年   3篇
  1973年   3篇
  1972年   3篇
排序方式: 共有10000条查询结果,搜索用时 406 毫秒
161.
将空间化学与材料科学、场化学和航天航空技术相结合,开辟空间化学新的研究方向,即实验空间化学,这是本文的宗旨。本文详叙了问题的由来,学科思想的萌生,学科建设的可行性和新的交叉学科的重大理论意义及其潜在的应用前景。  相似文献   
162.
付伟  赵芹  罗鹏  李佩强  陆济璞  周辉  易泽邦  许成 《地质学报》2022,96(11):3901-3923
传统认为中国南方的离子吸附型稀土矿床可划分为以“足洞式”为代表的重稀土型和以“河岭式”(或“花山式”)为代表的轻稀土型两种矿化类型。然而,近年来发现的许多矿床(如清溪、寨背和馒头山等)的赋矿风化壳中出现了轻稀土矿与重稀土矿并存现象,表现出特殊的“上轻下重”双层矿体结构。这指示了除重稀土型和轻稀土型之外,还存在着轻重稀土共生型的过渡类型。本研究通过对三种不同成矿类型的若干典型矿床系统对比,指出成矿类型的多样性与母岩性质密切相关,尤其是母岩的稀土元素地球化学和稀土载体矿物属性是制约成矿类型变化的关键因素。统计数据表明,从重稀土型→轻重稀土共生型→轻稀土型,成矿母岩的全岩稀土总量变化不大(ΣREY: 200×10-6~450×10-6→200×10-6~500×10-6→200×10-6~800×10-6),但轻重稀土配分值出现较显著的区间性差异(ΣLREE/ΣHREY: 02~1→1~5→2~10)。与之同时,母岩中能为离子相稀土提供物源且具有重稀土配分属性的稀土副矿物类型和数量明显减少,这与全岩稀土元素地球化学特征中重稀土分量占比的降低趋势也互相匹配。该结果指示,以往认为重稀土配分母岩形成重稀土矿床、轻稀土配分母岩形成轻稀土矿床的传统观点需要外延,即一部分具有低度轻稀土配分属性(1<ΣLREE/ΣHREY<5)且含有丰富易风化稀土副矿物的母岩还可能形成轻重稀土共生型矿床,该认识可为今后离子吸附型稀土矿床勘查工作提供新的找矿依据。  相似文献   
163.
为了解四川西部夏塞银多金属矿区黑云母二长花岗岩形成和矿化发生的时代及成矿物质来源,测定了该矿区绒依措和若洛隆花岗岩的Rb-Sr年龄和钾长石、黑云母及主要银矿化阶段石英的40Ar/39Ar年龄及矿石的硫、铅同位素组成.花岗岩的结晶年龄约为93 Ma,银矿化年龄约为75 Ma.矿石硫可能源于花岗岩,但不能排除源于弱沉积围岩的可能性;矿石、花岗岩和弱变质沉积围岩的铅同位素组成相似,铅主要源于上地壳,少量源于下地壳.  相似文献   
164.
2005年12月23日~24日,中国地质调查局分析质量检查组对江苏省地质调查研究院测试所承担的“江苏国土生态地球化学调查”多元素分析测试工作进行了最终成果评审和评级验收。检查组听取了情况汇报,了解了数据的使用情况,随后逐一审阅了54项分析指标的地球化学图,同时对外部标准控制样的各项质量参数进行了统计分析,并查阅了分析测试的原始记录。检查组认为,“江苏国土生态地球化学调查”项目土壤样品多元素分析工作的各项指标均达到或优于规范要求,地球化学图图面效果好,元素空间分布规律与地质背景特征和生态环境特征相吻合,分析数据准确、可…  相似文献   
165.
166.
The purpose of the thesis is to analyze the temporal and dimensional distribution of sulfate-reducing bacteria (SRB) groups and quantity in Lake Erhai. In April and September 2005, two sediment cores were collected from Lake Erhai. SRB groups were analyzed by PCR with six-groups primers designed according to the specific 16SrDNA sequence. FISH (fluorescence in-situ hybridization) was established with the oligonucleotide probe (SRB385) and utilized to analyze SRB quantity in the sediments. The results showed that in the sediments of Lake Erhai four SRB groups were detected except Desulfobacterium and Desulfobacter, meanwhile Desulfovibrio-Desulfomicrobium were detected only in autumn; different SRB groups had different temporal and dimensional distribution, and each group in autumn is distributed more widely than in spring; FISH used to count SRB in the sediments of fresh lake was set up successfully; the analysis of correlation between the sediment's depth and SRB quantity had statistical meaning (P〈0.05) . The result showed that SRB quantity showed a decreasing trend with increasing depth. Through the analysis of randomized block designed analysis of variance, the difference in SRB quantity between spring and autumn also had statistical meaning (P〈0.001), which revealed SRB quantity in autumn was larger than in spring; the result of FISH showed that there were some SRB in the deeper sediments in which no above-mentioned six SRB groups were detected by PCR. SRB groups in the sediments of Lake Erhai were rich, and the quantities of SRB groups in autumn were larger than in spring; possibly there were uncultivable SRB groups in the sediments of Lake Erhai.  相似文献   
167.
Arsenic is one of the most important single-substance toxicants in the environment. In Inner Mongolia of China, 300000 residents are believed to drink water containing 〉50 μg/L. Skin lesions have been known as the most common consequences resulting from chronic exposure to arsenic. To clarify the prevalence of arsenic-induced skin lesions, it is important to assess the impact of this problem on the target population, and to make future planning. We evaluated the association between multi-level inorganic arsenic exposure from drinking water and skin lesions in an arsenic-affected area in Inner Mongolia, China. 109 and 32 subjects fi'om high-level arsenic-affected (〉5 μg/L) village and low-level (≤50 μg/L) village were recruited and had detailed physical examination with special emphasis on arsenic-related skin lesions. Arsenic exposure was measured for each participant with As concentration of primary well and the duration of using the well was recorded. Arsenic-induced skin lesions including keratosis, pigmentation, and/or leucomelanosis were diagnosed in 56 and 3 subjects in the two villages, respectively. Logistic regression was conducted to calculate prevalence-odd ratios of skin lesions by levels of arsenic exposure with adjustment of sex, age group, smoking and duration of exposure. A consistent dose-response relationship between arsenic exposure level and skin lesion risk was observed.  相似文献   
168.
Natural uranium has three isotopes, ^238U, ^235U and ^234U, with natural abundances of 99.27 atom %, 0.72% and 0.0055%, respectively. Only ^235U is fissile and the production of nuclear fuel and nuclear weapons involves enrichment of uranium in ^235U. This process also results in separation of ^234U from ^238U, leaving depleted uranium (DU), with typical ^234U/^238U and ^235U/^238U activity ratios of about 0.19 and 0.013, respectively, as a waste product. The high density, high melting and boiling points and chemical stability of uranium and the availability of DU in relatively pure form mean that DU has many uses, including armour-piercing munitions. Such munitions have been developed in the UK since the 1960s and testing has been carried out by the Ministry of Defence (MoD) at firing ranges such as Dundrennan, SW Scotland and Eskmeals, NW England. The firing of DU munitions can result in the dispersion of DU and its combustion products (oxides) as aerosols or as larger fragments, with the potential for human exposure either directly at the site of detonation or via post-depositional migration in the environment. The aim of this work was to investigate the potential environmental mobility of DU by characterizing the associations of U in soil porewaters with increasing distance from a firing site. To this end, several soil cores located down-wind of the firing site at Dundrennan, near Kirkcudbright, SW Scotland, were collected in May 2006. These were sectioned on-site into 1- or 2-cm depth intervals and porewaters were isolated by centfifugation (10 minutes; 8873 g) on return to the laboratory. Following filtration through 0.2-micron cellulose nitrate filters, the porewaters were analyzed by ICP-QMS (U concentration) and ICP-OES (Fe, Al, Ca, Mg, Mn concentrations). Sub-samples were also subjected to centrifugal ultrafiltration (100, 30, and 3 kD) and to gel electrophoretic fractionation (agarose; 0.045 M Tris-borate; 20 mA, 30 minutes). Results showed that U was present at up to 4 μg/L in the soil porewater and that the associations of U varied with sample location and soil depth.  相似文献   
169.
Biological iron and manganese removal utilizing indigenous iron and manganese oxidizing bacteria (IRB hereafter) in groundwater can also be applied to arsenic removal according to our pilot-scale test. The arsenic removal probably occurred through sorption and complexation of arsenic to iron and manganese oxides formed by enzymic action of IRB. We investigated the chemical properties of iron and manganese oxides in IRB floc and the valence state of arsenic sorbed to the floc to clarify the mechanisms of the arsenic [especially As (Ⅲ)] removal. The floc samples were collected from two drinking water plants using IRB (Jyoyo and Yamatokoriyama, Japan), and our pilot - scale test site where arsenic and iron removal using IRB is under way (Mukoh, Japan). The Jyoyo and Yamatokoriyama IRB floc samples were subjected to As (Ⅲ) and As(Ⅴ) sorption experiments. The elemental composition of the floc samples was measured. XANES spectra were collected on As, Fe and Mn K-edges at synchrotron radiation facility Spring 8 (Hyogo, Japan). FT-IR and the X-ray diffraction spectra of the samples were also obtained. The IRB floc contained ca. 35 % Fe, 0.3%-3.5% Mn and 2%-6% P. The samples were highly amorphous and contained ferrihidrites and hydrated iron phosphate. According to XANES analyses of IRB, As associated with IRB was in +5 valence state when As (Ⅲ) (or As (Ⅴ)) was added in laboratory sorption test, Fe in +3 valence state, and Mn a mixture of+3 and +4 valence states. Small shift was observed in the XANES spectra of IRB on As K-edge as the equilibration time of the sorption experiment was increased. Gradual oxidation of a small amount of As (Ⅲ) associated with IRB or change in arsenic binding with sorption site were the probable mechanism.  相似文献   
170.
Although inorganic species are predominant in natural systems, but there are many kinds of organoarsenic species such as methylated and phenylated arsenic compounds. Phenylarsonic acid (PA) is a degradation product of organoarsenics used for chemical warfare agents, which has been detected in well water at the disposal site of the agents in Japan. There are few reports studying behavior of PA in soil. In this study, PA was adsorbed onto ferrihydrite and its chemical forms were determined using high performance liquid chromatography connected to inductivity-coupled plasma mass spectrometry (HPLC-ICP-MS). 100 mg/kg of PA was mixed with 0.03 g of 2-line ferrihydrite. For each suspension, pH was adjusted by HNO3 or NaOH. Each sample was incubated for more than 19 hours and the final pH was measured. After filtration, the chemical form of arsenic in the filtrate was measured using HPLC-ICP-MS. In addition, ferrihydrite separated by filtration was dissolved by 3 ml of 0.5 M HCI and the arsenic species in the solution was detected by HPLC-ICP-MS (column: Tosoh TSKgel SuperlC-AP, eluent: 0.01 M HNO3). It was verified that PA is not degraded by heating in 0.5 M HCl solution. At pH 3.1, any arsenic compounds were not detected from the solution, because almost all arsenic species were adsorbed onto ferrihydrite at lower pH. At pH= 12, however, 7%-10% of inorganic arsenic was detected in the solution. In solid phase, there are some problems to determine the precise ratio of inorganic and organic species. When the solution includes Fe ion at 0.01 M level, the retention time of arsenic species drifted compared to those in standard solution, which makes it difficult to determine precisely the arsenic species adsorbed on ferrihydrite. Therefore, more study is needed to determine the ratio of inorganic and organic species in the system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号