首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5926篇
  免费   1651篇
  国内免费   2822篇
测绘学   90篇
大气科学   23篇
地球物理   1706篇
地质学   7818篇
海洋学   313篇
天文学   5篇
综合类   386篇
自然地理   58篇
  2024年   68篇
  2023年   248篇
  2022年   251篇
  2021年   318篇
  2020年   265篇
  2019年   290篇
  2018年   245篇
  2017年   248篇
  2016年   263篇
  2015年   331篇
  2014年   474篇
  2013年   387篇
  2012年   448篇
  2011年   509篇
  2010年   409篇
  2009年   447篇
  2008年   373篇
  2007年   390篇
  2006年   394篇
  2005年   272篇
  2004年   331篇
  2003年   298篇
  2002年   329篇
  2001年   397篇
  2000年   325篇
  1999年   241篇
  1998年   317篇
  1997年   219篇
  1996年   268篇
  1995年   218篇
  1994年   202篇
  1993年   121篇
  1992年   151篇
  1991年   113篇
  1990年   100篇
  1989年   55篇
  1988年   20篇
  1987年   15篇
  1986年   8篇
  1985年   8篇
  1984年   6篇
  1982年   3篇
  1981年   4篇
  1980年   3篇
  1979年   5篇
  1975年   1篇
  1974年   1篇
  1966年   1篇
  1965年   1篇
  1954年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
陕西穆家庄铜矿床后生成矿作用的流体地球化学证据   总被引:2,自引:2,他引:2  
尽管秦岭泥盆系铅锌金多金属成矿带成矿作用均与热水喷流沉积作用有关,柞山地区却有别于风太地区,具有独特的铜矿成矿背景。流体包裹体研究揭示了后生成矿流体的两阶段流体演化过程:第一阶段的成矿流体为中温,中高盐度岩浆热液含CO2的NaCl—H2O流体。均一温度为190-265℃,盐度12.5~35.34(w1%NaCl),压力12.8~21.3MPa,在同地寄主矿物中均一温度变化小,而盐度变化极大,是岩浆流体沸腾的产物;第二阶段成矿流体为中高温,中高盐度岩浆期后热液NaCl-H2O流体。均一温度为300~350℃,盐度7.4~41.59(w1%NaCl),压力10.8~19.3MPa。反映了岩浆期后热液流体的二次沸腾。应用流体地球化学的综合方法(包裹体流体组成、演化)识别出后生交代流体性质。穆家庄铜矿的成矿流体第一阶段为岩浆水,第二阶段的成矿流体为岩浆水加部分地层水(建造水)。氢氧同位素分析也支持上述结论。  相似文献   
102.
青藏高原东缘缅萨洼金矿成矿流体地质地球化学特征   总被引:3,自引:0,他引:3  
缅萨洼金矿位于中国中轴构造带的中南段,青藏高原的东缘,赋存于金河-箐河断裂带次级断裂羊坪子韧性剪切带中本文根据对该矿床硫化物流体包裹体的氦氩同位素、硫化物的硫同位素以及与硫化物共生的石英的流体包裹体特征、成分以及氢氧同位素组成的测定,讨论了缅萨洼金矿的成矿流体来源及其矿床成因。结果显示,该矿床硫化物流体包裹体中的3He/4He变化较小,为0.69-0.82,显示了地幔流体参与成矿作用的可能性。而4He的含量变化范围较大,一般在2.19-10.62×10-6cm3STP/g(方铅矿除外)与3He/4He相比,40Ar/36Ar的比值则变化较小,一般为251-509。而硫化物的δ34S同位素变化范围在-1.8-2.2‰,平均值为0.5‰,说明硫的地幔来源。与硫化物共生的石英的流体包裹体的类型主要有富液相的盐水溶液包裹体、富气相的盐水溶液包裹体、三相CO2包裹体、纯液相CO2包裹体以及有机流体包裹体。成矿流体的氢氧同位素则显示成矿流体来源于岩浆水(或地幔流体)与大气降水的混合流体,本文认为,缅萨洼金矿的成矿流体为地幔流体与大气降水的混合流体,是渐新世印度大陆与亚洲大陆碰撞之后,该地区大规模走滑与剪切作用过程中,局部伸展作用的产物。  相似文献   
103.
超临界流体中MoO3与WO3溶解度实验探讨   总被引:1,自引:1,他引:1  
超临界地质流体以其独特的性质对金属成矿元素具有超强的萃取、层析和搬运能力,在热液矿床成矿机制研究中对揭示成矿物质的源、流和汇起着特殊和重要作用。本文利用分析纯H2MoO4在高温下脱水制备了MoO3(白色斜方晶系),在冷封式高压釜中实验测定了417℃超临界条件下,MoO3在纯水中的溶解度分别为7.3(29MPa)、14.2(45MPa)、21.6(55MPa)、27.7(78MPa)、32.5(100MPa)、和34.2(150MPa)mmol/l,热液中钼的存在形式为H2MoO4。依据前人的实验方案,补充测定了WO3在4.0%NaCl水溶液中于450%条件下的溶解度,其值分别为27.51(50MPa)和30.52(100MPa)mmol/l。结合前人研究结果发现,MoO3、WO3的溶解度在临界区域内具有超临界现象,在超临界条件下其溶解度与石英的超临界溶解度行为基本相似,表现为溶解度随体系温度和压力的升高而增大,这对揭示岩浆热液型和石英脉型钨、钼矿床的形成机制具有重要指导作用。  相似文献   
104.
中酸性岩浆体系成矿流体及微量元素地球化学特征   总被引:5,自引:0,他引:5       下载免费PDF全文
从流体成矿作用角度出发,与酸性岩浆体系有关的成矿流体可以分为:酸性岩浆硅酸盐熔融体,岩浆一热液过渡阶段硅酸盐熔融体及其分异的流体,酸性岩浆熔体分异形成的热水成矿溶液。酸性岩浆体系主要提供热源和部分矿质,其提供的热源驱动地下水淋滤、萃取围岩中的成矿物质形成地下水热液成矿流体。变质岩混合岩化形成花岗质岩浆过程中所形成的混合岩化成矿流体。在此基础上,讨论了上述不同成矿流体的微量元素地球化学特征及其对成矿的控制作用。  相似文献   
105.
中国大陆科学钻探(CCSD)主孔地区岩石圈热结构   总被引:11,自引:2,他引:11  
岩石圈热结构是指地球内部热量在壳幔的配分比例、温度以及热导率和生热率等热学参数在岩石圈中的分布特征。岩石圈的热结构直接影响着岩石的物理性质和流变学性质,同时还控制了化学反应的类型和速度,从而制约着岩石圈的发展和演化。本文在前人CCSD主孔岩石主、微量元素研究基础上,利用Rybach生热率公式计算了钻孔岩石的放射性生热率,并结合岩石热导率的测定研究了CCSD主孔100-2000m岩石的热结构和主孔榴辉岩在不同退变质程度下生热率、热导率的变化:钻孔中岩石的平均生热率为0.95μWm-3,平均热导率为2.96mWm-1K-1。,其中片麻岩生热率高迭1.01-1.7μWm-3,热导率为2.76-2.96mWm-1K-1;基性超基性岩石生热率最低(<0.21μWm-3),热导率则高达3.20mWm-1K-1以上;新鲜榴辉岩生热率、热导率居中,分剐为0.16-0.44μWm-3和3.31-3.85mWm-1K-1。钻孔中榴辉岩生热率、热导率变化主要受岩性控制:从新鲜榴辉岩到完全退变榴辉岩,热导率总体上降低,但从强退变榴辉岩到完全退变榴辉岩,岩石热导率升高;而在此过程中岩石生热率总体上升高,仅当从中等退变质榴辉岩退变为强退变质榴辉岩时,岩石生热率出现降低趋势。在综合研究的基础上预测CCSD主孔5000m深度处温度为139℃,温度范围为131-151℃。根据区域深部地球物理探测成果对CCSD主孔地区岩石圈热结构进行了研究:上地壳底部温度为256℃,中地壳底部温度为492℃,Moho面温度为683℃,岩石圈底部温度为1185℃,来自地幔的热流为44.1mWm-2,对地表热流的贡献率为58%。研究结果表明,由岩石物理方法获得的CCSD主孔地区岩石圈地温曲线与石榴石-二辉橄榄岩包体推断的中国东部地温曲线十分吻合,本文从实验岩石物理学角度为CCSD主孔地区岩石圈热结构研究提供了重要约束  相似文献   
106.
中国大陆科学钻探工程在线流体地球化学监测在2004年12月10至2005年1月10日之间捕获到一段重要的气体地球化学异常。该异常从2004年12月24日晚上11点半开始到12月29日晚上7点半结束,其中在12月26日早上7点半到29日晚7点半这段异常非常特殊,表现出流体地球化学的剧烈变化。具体表现为流体组分从基本上不含Ar、He及N2跳跃到富含Ar、但亏损He和N2。该异常发生在2004年9.3级苏门答腊地震前1个半小时。由于CCSD现场离苏门答腊地震震中距离大于4170公里,大于该地震破裂长度1200公理的3倍,该地震在CCSD现场产生的静态应力变化微乎其微,不足以导致CCSD现场深部岩石或封闭破裂的岩石物理性质剧烈变化,因而可以排除静态激发效应的作用。在我国的云南和广东等地所观测到的地震异常和地下水位变化等表明2004年苏门答腊地震的动态激发效应主要沿东北方向,这和大地震的动态激发具有方向性一致。而CCSD现场就位于该方向上。我们推测2004年苏门答腊地震所产生的面波在CCSD现场激发的动态效应,导致库仑型失稳,增进深部岩石或破裂带的渗透率,释放富含Ar但亏损He和N2的流体,产生CCSD所观测到的气体异常。  相似文献   
107.
胶东中生代构造体制转折过程中流体演化和金的大规模成矿   总被引:23,自引:21,他引:23  
胶东是我国最大的金矿产出集中区,依据矿床和矿点的密集程度,可分为招远-莱州-平度、蓬莱-栖霞、牟平-乳山三个成矿带,区域内金矿类型可主要分为石英脉型和蚀变岩型。高精度的单矿物 Ar-Ar、Rb-Sr 同位素及热液锆石离子探针测年研究业已证买,金成矿的时代为120±10Ma,金矿床载金矿物-黄铁矿、矿石-黄铁矿石英脉、控矿围岩-花岗岩和变质岩等及伴生脉岩的 Sr-Nd 放射性同位素研究也证明,金成矿物质具有多源性,既来自于控矿围岩-花岗岩和变质岩,又来自于幔源的岩浆岩,流体包裹体研究表明,各类金矿具有一致的成矿流体介质条件,为低盐度 H_2O-CO_2-NaCl±CH_4流体,金成矿温度、压力条件近似,主成矿温度为170~335℃,成矿压力为70~250MPa。氢氧等稳定同位素结果表明,成矿流体可能来源于与金矿床伴生的基性幔源岩浆脱水形成的岩浆水,但在地壳浅部遭受到大气降水的混合。因此,胶东各类型金矿是在同一成矿背景下形成的矿床,与区域内中生代构造体制转折作用有关,也是中生代构造体制转折的表现形式之一。  相似文献   
108.
对新疆准噶尔地区浅成低温热液型金矿床中富硫型的阔尔真阔腊金矿、贫硫型的石英滩金矿进行了流依包裹体的均一温度、爆裂温度、包裹体气液相成分、H、O 同位素、矿体围岩及脉石英包裹体 C 同位素、矿体中黄铁矿等 S、Ph 同位素等系统地进行了研究,综合研究表明,本区该类型金矿成矿流体一般温度低、盐度低,来源主要为循环的大气水、矿石中黄铁矿的 S、Pb 同位素均为深源,暗示金的深部来源:矿体石英包裹体中 CO_2的δ~(13)C 为低于-10‰的有机碳,反映了本区年轻的富含有机质的沉积地层参与了金的成矿。此外,本文首次提出了富硫型阔尔真阔腊金矿床成矿流体中有侵入岩浆热液参与,深部有多金属成矿远景;贫硫型石英滩金矿没有侵入岩浆热液的参与,成矿仅与火山古热液活动有关,其成矿较单一。此外,阔尔真阔腊金矿中低温流体活动较强,金矿化也较强:石英滩金矿低温流体活动相对较弱,金矿化也较弱,也体现了该类型金矿床低温流体活动的越强烈,金矿化越强的规律。  相似文献   
109.
刘斌 《岩石学报》2005,21(5):1416-1424
在自然界广泛分布着烃-烃不混溶体系中捕获的流体包裹体,由于这些包裹体具有复杂的组成和相态,因此不混溶包裹体组合的判别和热力学参数的计算常常难以进行。根据烃-烃不混溶体系中两个端员组分流体包裹体室温下的相态特征和在温度-压力平面图上等容线交点显示的位置,划分成三种类型流体包裹体组合,本介绍了三种类型流体包裹体组合特征,叙述了不混溶烃-烃包裹体组合的测定和判别方法,并且阐述均一化包裹体相态方程和气-液平衡常数原理和方法与此同时列举了自然界简单的三种类型不混溶烃-烃包裹体组合的测定、判别和计算的几个实例,利用相态方程和气-液平衡常数,不但精确地计算出包裹体均一压力,并且精确地计算出流体密度和体积等热力学参数。最后,利用均一成气相和液相的两种包裹体在 p-T 平面图上等容线交点同样计算出流体包裹体组合的捕获温度和压力。  相似文献   
110.
红透山块状硫化物矿石主要成分为黄铁矿、磁黄铁矿、黄铜矿、闪锌矿和石英、角闪石、黑云母等脉石矿物。切成长40mm 直径17mm 的矿石圆柱用20wt%NaCl 溶液浸泡260小时后装入长江500型活塞-圆筒式三轴应力试验机,在362℃414MPa 围压下加1342MPa 轴压,13小时后于空气中自然冷却。实验后试样长度压缩为32.3mm,算得应变速率为4.1×10~(-6)/s。实验产物中出现大量垂直应力轴的松弛裂缝。黄铁矿强烈脆性破裂,而磁黄铁矿、黄铜矿和闪锌矿以塑性变形为主,局部也发生脆性破裂。再活化黄铁矿、磁黄铁矿和黄铜矿分别充填同种矿物的碎粒间隙。再活化产物也呈细脉穿插脆性变形的黄铁矿碎斑,细脉中以黄铜矿为主,其次是磁黄铁矿,有时含极少量闪锌矿,在磁黄铁矿、黄铜矿和闪锌矿的塑性变形区内,以及变形的石英和其它脉石矿物中均无再活化硫化物产出。实验结果表明在构造应力作用下强干性矿物和地质体容易发生脆性变形,从而为再活化成矿流体的运移和析出矿质提供通道和空间,而韧性变形区较难提供流体通道和矿质沉淀空间。所以,再活化成矿作用容易发生在脆性变形区和韧-脆性转换部位。原生矿石中的黄铜矿在实验条件下比其它三种硫化物更容易再活化。脆性变形的黄铜矿和黄铁矿比起其它矿物来更容易接受含铜流体的叠加,因此地层中的含铜黄铁矿矿胚层最容易受叠加流体作用而形成层控富矿床。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号