首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1849篇
  免费   463篇
  国内免费   644篇
测绘学   451篇
大气科学   248篇
地球物理   287篇
地质学   1333篇
海洋学   335篇
天文学   13篇
综合类   179篇
自然地理   110篇
  2024年   19篇
  2023年   83篇
  2022年   90篇
  2021年   114篇
  2020年   90篇
  2019年   130篇
  2018年   94篇
  2017年   112篇
  2016年   87篇
  2015年   105篇
  2014年   177篇
  2013年   136篇
  2012年   122篇
  2011年   141篇
  2010年   119篇
  2009年   111篇
  2008年   107篇
  2007年   104篇
  2006年   79篇
  2005年   83篇
  2004年   87篇
  2003年   93篇
  2002年   63篇
  2001年   59篇
  2000年   47篇
  1999年   45篇
  1998年   41篇
  1997年   74篇
  1996年   57篇
  1995年   48篇
  1994年   40篇
  1993年   51篇
  1992年   31篇
  1991年   34篇
  1990年   23篇
  1989年   25篇
  1988年   7篇
  1987年   8篇
  1986年   4篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1965年   2篇
  1951年   1篇
  1950年   1篇
  1948年   2篇
  1941年   1篇
排序方式: 共有2956条查询结果,搜索用时 250 毫秒
81.
高喜马拉雅结晶岩系中存在的混合岩化现象是地壳深熔作用的结果. 广泛发育于高喜马拉雅结晶岩系中的混合岩(称为高喜马拉雅混合岩)为研究地壳深熔过程及其与喜马拉雅淡色花岗岩(简称为淡色花岗岩)的成因联系, 为探讨地壳深熔在碰撞造山后地壳演化中的作用提供了重要的线索. 目前对于混合岩与淡色花岗岩的形成是否存在成因关联, 混合岩与深部断裂构造的形成和发展之间的关系问题, 在认识上存在分歧. 缺乏该混合岩形成的直接年代学资料是产生分歧的重要原因之一. 对高喜马拉雅结晶岩系中的混合岩的3个基本组成单元——中色体、浅色体和暗色体进行了详细的地球化学研究; 对其中的浅色体进行了K-Ar年代学研究. 结果表明Ⅰ-类浅色体的形成年龄约为23 Ma. 该年龄与喜马拉雅主中央断层开始活动的时代一致或略早于其形成时代, 显示地壳深熔在主中央断层的形成中可能起着关键的作用. Ⅱ-类浅色体的形成年龄与淡色花岗岩的形成时代一致, 从年代学上为淡色花岗岩与混合岩中浅色体的成因联系提供了新的约束. 本次研究在聂拉木地区获得了6.23 Ma浅色体形成年龄, 这是目前在高喜马拉雅中段获得的最年轻的淡色花岗岩岩浆活动的证据.  相似文献   
82.
辽宁夏季气温降水气候分区研究   总被引:6,自引:0,他引:6  
应用聚类分析方法,以气候平均为辅,对1961~2000年辽宁53个测站的夏季气温和降水资料进行标准化处理,并根据各站之间的相关程度差异和气候特点,对辽宁夏季平均气温和平均降水进行气候分区。结果表明:辽宁夏季气候特点为,降水东部多西部少;气温中北部偏高,南部沿海凉爽。  相似文献   
83.
龙凡  韩天成 《地下水》2004,26(1):43-47
本文通过联剖、电测深、磁法和测温法等综合工作成果,分析、推断出汤上屯热水构造的产状、性质和热水出露条件,圈定出了热水分布范围.  相似文献   
84.
采用RNG紊流模型计算静止环境中圆形负浮力射流   总被引:3,自引:3,他引:3       下载免费PDF全文
基于RNG方法的κ-ε湍流模型,运用混合有限分析算法对静止环境中圆形负浮力射流进行数值模拟。从射流的最大入侵高度、流速矢量图、温度等值线、湍动能等值线、横断面上的流速和温度分布以及轴线上温度变化等方面与有效的试验资料进行了较为全面的对比验证。两者的良好吻合表明,基于RNG方法的紊流模型和混合有限分析法的结合能较好地模拟变密度流动。  相似文献   
85.
Abstract  Abundant mafic microgranular enclaves (MMEs) extensively distribute in granitoids in the Gangdisê giant magmatic belt, within which the Qüxü batholith is the most typical MME‐bearing pluton. Systematic sampling for granodioritic host rock, mafic microgranular enclaves and gabbro nearby at two locations in the Qüxü batholith, and subsequent zircon SHRIMP II U‐Pb dating have been conducted. Two sets of isotopic ages for granodioritic host rock, mafic microgranular enclaves and gabbro are 50.4±1.3 Ma, 51.2±1.1 Ma, 47.0±1 Ma and 49.3±1.7 Ma, 48.9±1.1 Ma, 49.9±1.7 Ma, respectively. It thus rules out the possibilities of mafic microgranular enclaves being refractory residues after partial melting of magma source region, or being xenoliths of country rocks or later intrusions. Therefore, it is believed that the three types of rocks mentioned above likely formed in the same magmatic event, i.e., they formed by magma mixing in the Eocene (c. 50 Ma). Compositionally, granitoid host rocks incline towards acidic end member involved in magma mixing, gabbros are akin to basic end member and mafic microgranular enclaves are the incompletely mixed basic magma clots trapped in acidic magma. The isotopic dating also suggested that huge‐scale magma mixing in the Gangdisê belt took place 15–20 million years after the initiation of the India‐Asia continental collision, genetically related to the underplating of subduction‐collision‐induced basic magma at the base of the continental crust. Underplating and magma mixing were likely the main process of mass‐energy exchange between the mantle and the crust during the continental collision, and greatly contributed to the accretion of the continental crust, the evolution of the lithosphere and related mineralization beneath the portion of the Tibetan Plateau to the north of the collision zone.  相似文献   
86.
由于缺乏长期观测资料,前人对山东半岛邻近海域海水溶解氧的时间变化和空间分布特征的研究较少。本文基于威海刘公岛海洋牧场于2016年7月20日至2017年3月14日期间,利用生态环境实时在线观测系统获得的底层海水的温度、盐度、水深、溶解氧数据,分析了该牧场海水溶解氧浓度的时间变化特征及其影响因素,并探讨了低氧灾害发生的可能性。结果表明在观测期间,该牧场海水溶解氧浓度以季节变化为主,冬季最大、夏季最小,其中2月份平均值最高,约为10.86mg/L,8月份平均值最低,约为5.91mg/L。同时海水溶解氧浓度也存在显著的小时变化和日变化,且变化幅度于8月份最大、3月份最小。影响海水溶解氧浓度变化的主要因素是海水温度,溶解氧浓度随着温度的季节性变化而变化。夏季,水体分层会使溶解氧浓度发生大幅度的降低,大风过程对于溶解氧浓度也有一定的影响,通过打破夏季的季节性温跃层使水体发生垂向混合从而为海底提供氧气,但大风过程之后的几天会出现溶解氧浓度降低的现象。本次研究发现刘公岛海洋牧场在观测期间不存在低氧现象。  相似文献   
87.
在SAR图像变化检测过程中,假设差异图类别服从单一分布,构造单一类型的差异图不能完好地保留变化信息,从而影响SAR图像变化检测的精度。针对上述问题,提出一种基于差异图融合和高斯混合模型GMM(Gaussian Mixture Model)的非监督SAR图像变化检测方法。该方法利用给定的融合因子进行差值和比值图融合,采用最大期望算法EM(Expection Maximum)求解融合差异图的GMM参数,并根据后验概率将图像像素分配到GMM各个分量,从而获得SAR实验区域的变化检测图。3组SAR数据集的变化检测实验验证了所提方法的可行性和有效性。  相似文献   
88.
城市居民日常身体活动时空分异特征及影响因素   总被引:2,自引:2,他引:0  
姜玉培  甄峰  赵梦妮  曹晨 《地理科学》2019,39(9):1496-1506
依托南京主城区居民日常身体活动调查数据,基于身体活动时空维度,挖掘城市居民日常身体活动时空分异特征,并采用混合效应模型探究身体活动分异的影响因素。研究表明:居民日常身体活动时空异质特征明显。工作日/非工作日不同类型身体活动时间安排及个体间差异均显著;工作性、交通性、家务性身体活动空间制约明显,而休闲性身体活动空间分布更具弹性;与工作日相比,非工作日不同类型身体活动空间范围变化收敛与扩散特征并存。活动空间范围、个人社会经济属性、自身健康状况对居民日常身体活动分异均具有显著影响。具体而言,居民日常活动空间范围决定身体活动的空间适应与选择;社会分工差异导致不同性别、年龄人群身体活动具有指向性;身体活动时间出现与个人社会经济实力倒置现象;而良好健康状态会激励居民日常身体活动的保持。  相似文献   
89.
杭州湾营养盐时空分布特征及其影响研究   总被引:1,自引:0,他引:1       下载免费PDF全文
文章基于2015年1—12月杭州湾海域12个航次的调查资料,对杭州湾海域营养盐溶解无机氮(DIN)和活性磷酸盐(PO_4~(3-))的月度时空分布特征及其影响进行了探讨。结果表明,杭州湾表层海水DIN和PO_4~(3-)含量空间分布月际间变化明显,其变化受湾内、沿岸径流输入和长江冲淡水影响显著。杭州湾海域12个月DIN含量均超第四类海水水质标准,硝酸盐氮(NO_3~-)占DIN的94%及以上。N/P值处于较高水平,内湾(IB)和外湾(OB)的N/P值季节性变化幅度比中湾(CB)大,海湾生态系统对磷的变化敏感。营养盐-盐度对研究区域的水体混合状况有明显的指示作用,杭州湾营养盐的分布主要受物理混合作用所控制,浮游生物活动对营养盐分布的影响相对较小。  相似文献   
90.
【目的】研究Merantia、Malaks、Megi、Chaba4个连续台风引起上层海洋的响应。【方法】基于遥感和再分析数据,分析台风前海洋环境、台风做功(W)、强迫时间(tf)、降水等要素分布特征,探讨上层海洋稳定度、上升流、湍流混合动力机制如何影响中尺度涡区域的海表温度(SST)、浮游植物繁殖程度,引入动力学参数S判断海洋内部上升流和混合重要性。【结果和结论】冷涡(CE)区域海洋表层降温(SSC)(3.5℃)和叶绿素a(Chl-a)质量浓度(0.5mg/m3)对于台风响应比暖涡(AE)区更为剧烈,与其内部热力学结构有关,出现在Megi过境CE区,主要原因是海洋本身CE特征、强上升流(EPV)=2.5×10-4 m/s,S<1,台风向海洋输入巨大的能量(W>80 kJ)引起剧烈的混合夹卷、强降雨,导致海水迅速重新层化、逐渐加强的非线性CE有更强的封闭性,这些机制的共同作用将底层(营养盐跃层100m以下)富含营养盐的冷水输送到上层;Malaks过境CE(124.9°E,22.3°N)缺乏强上升流(EPV=5×10-5 m/s),以湍流混合为主(S>1);Merantia使CE区域表现下沉流(EPV<0),SSC主要是湍流混合的作用(W>25kJ),Chl-a浓度增长到0.27mg/m3。AE热力学结构比较稳定,连续台风导致SSC<2℃,Chl-a增加仅200%,Merantia、Malaks过境AE(125.1°E,20.6°N)分别以强上升流(S<1)和湍流混合(S>1)为主,混合层厚度约80 m,同时AE周围无强障碍带,易与周围水体交换,Chl-a浓度微弱增加。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号