首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   657篇
  免费   91篇
  国内免费   109篇
测绘学   47篇
大气科学   366篇
地球物理   15篇
地质学   262篇
海洋学   23篇
综合类   26篇
自然地理   118篇
  2024年   9篇
  2023年   26篇
  2022年   30篇
  2021年   39篇
  2020年   25篇
  2019年   28篇
  2018年   28篇
  2017年   30篇
  2016年   33篇
  2015年   18篇
  2014年   47篇
  2013年   38篇
  2012年   45篇
  2011年   36篇
  2010年   46篇
  2009年   41篇
  2008年   27篇
  2007年   36篇
  2006年   20篇
  2005年   34篇
  2004年   26篇
  2003年   15篇
  2002年   13篇
  2001年   31篇
  2000年   18篇
  1999年   14篇
  1998年   19篇
  1997年   11篇
  1996年   9篇
  1995年   12篇
  1994年   3篇
  1993年   11篇
  1992年   14篇
  1991年   11篇
  1990年   5篇
  1989年   3篇
  1988年   5篇
  1936年   1篇
排序方式: 共有857条查询结果,搜索用时 15 毫秒
91.
基于国际耦合模式比较计划第五阶段(CMIP5)历史模拟试验(historical run)的模式输出结果以及遥感数据,采用相关分析、均方根误差、标准差等统计方法,评估了13个气候(或地球)系统模式对欧亚大陆积雪覆盖率的模拟能力,在此基础上,采用多模式集合平均的方法对未来不同温室气体排放情景下(rcp2.6、rcp4.5和rcp8.5)欧亚大陆积雪覆盖率的变化进行预估。结果显示:尽管各模式模拟的积雪覆盖率在高原地区与观测差异较大,但总体看来模式能够对欧亚大陆积雪覆盖率的空间形态、季节变化及年际变化特征做出较好地模拟。未来预估结果表明,多模式集合平均预估的欧亚大陆积雪覆盖率从2006年到2040年左右减少趋势非常明显,且不同排放情景下模式模拟的积雪减少速率非常接近;然而,大约从2040年之后,不同排放情景下的积雪覆盖率减小趋势的差异越来越大,rcp2.6和rcp4.5下积雪覆盖率的变化趋于平缓,而rcp8.5情景下,积雪覆盖率一直减少,冬季、春季和秋季都明显减少,减少最显著的区域位于西欧和青藏高原地区。由此可见,控制温室气体的排放对于未来欧亚大陆积雪的变化是至关重要的。  相似文献   
92.
青藏高原冬春积雪异常影响中国夏季降水的数值模拟   总被引:3,自引:0,他引:3  
利用中国科学院大气物理研究所大气科学和地球流体力学国家重点实验室高分辩大气环流谱模式SAMIL—R42L9对青藏高原积雪异常影响我国夏季降水的机理进行了模拟研究,结果表明:高原冬春积雪正(负)异常使得从冬到夏高原的地面感热偏低(高)、地面热源偏低(高),造成春夏高原上升运动偏弱(强),长江流域和日本以南西太平洋上升运动较强(弱);另一方面,高原冬春多(少)雪年高原和我国东部地区气温偏低(高)、陆海温差的偏低(高)会延迟(促进)东亚夏季风的到来,一定程度上减弱(增强)了东亚季风的强度,因而西太平洋副高偏南(北),造成夏季我国长江中下游多(少)雨。进一步的分析还表明,高原冬春多(少)雪年,由于融雪增湿效应,高原春夏潜热明显增大(减少),使得空气中水汽增大(减小),可能是高原气温偏低(高)的一个重要因素。  相似文献   
93.
北京沙尘天气与源地积雪变化的关系   总被引:2,自引:0,他引:2  
主要分析了北京沙尘天气变化规律及沙尘源区积雪变化与北京沙尘日数的关系,并探讨源区积雪变化影响北京沙尘天气的机制.研究表明55年来北京沙尘日数基本呈减少趋势,但1998~2000年又有所增加,沙尘暴日数也在减少,近10年北京没有出现强沙尘暴天气.而沙尘源区积雪深度和积雪面积与北京沙尘存在明显的负相关关系.冬季源区积雪减少(增加),很可能导致春季沙尘日数增加(减少),作者认为冬季积雪变化引起的土壤含水量变化是影响春季北京沙尘天气的原因之一.  相似文献   
94.
中国西部主要台站积雪深度的空间插值研究   总被引:1,自引:0,他引:1  
应用空间插值方法,对中国西部地区(27.17~48.05°N,79.05~103.57°E)110个气象台站的观测数据进行空间内插,研究积雪分布特征。结果表明,普通Kriging法和Cokriging法都能够反映出研究区积雪深度分布的空间结构特征,与实际情况比较吻合。但相比之下,Cokriging法的精度更高,局部特征的反映更佳。分析发现,影响插值结果精度的主要因素是研究区内气象台站稀少,且空间分布很不均匀。通过合理的采样设计,选择合适的插值方法,并考虑地形、气候等影响积雪分布的因素将有利于改善空间插值精度。  相似文献   
95.
 介绍一种基于一阶辐射传输的积雪散射模型。该模型考虑了积雪覆盖地表微波散射的3种回波分量: 雪层表面散射、下垫面散射以及雪层体散射。对于其中2个面散射分量,文章中应用一种新的面散射模型——AIEM取代原有的IEM模型进行处理。最后,使用Michigan大学的实测数据对改进后模型的模拟结果进行验证,并与改进前的模拟结果进行了对比。  相似文献   
96.
利用1971—2016年辽宁省61个气象站气温、地表温度、积雪日数和积雪深度资料,分析了积雪的保温作用及其对地气温差的影响。结果表明:更换自动站前后地表温度观测方式的差异导致地气温差显著增大,地气温差的增大程度受所在区域积雪日数、积雪深度的影响显著。在积雪期较长、积雪较厚的地区,积雪引起反照率增大,使得雪面温度降低,导致雪气温差减小,而雪的保温作用使得地气温差显著增大。因此,更换自动站前地(雪)气温差与积雪日数呈显著负相关,而更换自动站后地气温差与积雪日数呈显著正相关。各台站之间地气温差随积雪深度的变化系数差异较大,为0.045~0.858 ℃?cm-1,在年平均积雪日数<40 d、年平均极端积雪深度<10 cm的区域,积雪的保温作用随积雪深度增大而显著增大;在年平均积雪日数>40 d、年平均极端积雪深度>10 cm的区域,10 cm以下的积雪对土壤保温作用随积雪深度增大显著,当积雪深度>10 cm后,其保温作用随积雪深度增大的幅度明显减小。  相似文献   
97.
积雪是地表特征的重要参数,对辐射收支、气候和长期天气变化均有重要影响。雪本身又是一个重要的天气现象和水文气象参数,过量的降雪也会带来严重的雪灾,如牧区雪灾、雪崩和融雪洪水灾害等。因此对积雪的监测,尤其是对山区的积雪监测,具有多方面的意义。利用卫星遥感技术监测积雪已有50余年的历史,并已形成了系列业务产品。青藏高原平均海拔超过4 000 m,该地区的积雪具有重要的水文、气候和生态环境意义。由于地形复杂,人迹罕至,地面观测站点稀少,受较强太阳辐射的影响,积雪消融迅速、区域差异消融以及风吹雪等因素导致积雪分布破碎化严重,对使用遥感资料监测该地区的积雪造成的极大的困难和不确定性。随着国内外传感器技术的不断发展,光学和被动微波遥感数据的同步获取技术已经非常成熟,综合利用光学遥感数据高空间分辨率和被动微波数据不受云干扰的特点,结合机器学习、无人机等技术,将环境参数加入反演模型中,有助于提高青藏高原积雪参数反演精度。  相似文献   
98.
针对南极考察站区小尺度高时相的积雪覆盖信息目前还没有成熟的监测手段这一问题,详尽地介绍了利用CCD相机进行积雪覆盖监测的方法,包括对相片分割阈值的选取、感兴趣区(ROI)的划定以及像素点的坐标转换等技术流程;计算和分析了2014年8月的南极长城站区积雪覆盖变化情况;并在此基础上,对未来站区附近积雪动态变化监测研究做了展望。  相似文献   
99.
利用吉林省45个气象站1960—2015年逐日积雪深度、气温和降水观测资料,分析该省积雪初、终日的变化特征及其对气候变化的响应。结果表明:(1)吉林省积雪初、终日的空间差异显著,东南山区积雪开始早且结束晚,可积雪期长;西北平原区积雪开始晚且结束早,可积雪期短。(2)吉林省积雪平均始于11月9日,止于次年4月1日,可积雪期达144 d。(3)近56 a积雪初、终日总体变化趋势不明显,但阶段性特征显著。其中,1980年代之前,积雪初日偏早、终日偏晚,1990年代后积雪初日偏晚、终日偏早,可积雪期缩短;积雪初、终日分别在1983年和1991年前后发生显著性突变。(4)积雪初、终日期对气温变化较为敏感。8—11月月平均气温与积雪初日呈显著正相关,而3月、4月平均气温与积雪终日呈显著负相关;积雪初、终日分别受0℃开始日期、10℃终止日期的影响。积雪初日与10月降水量呈显著负相关,而积雪终日与4月降水量呈显著正相关。  相似文献   
100.
基于MODIS数据中国天山积雪面积时空变化特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
基于2011-2015年MOD10A2积雪产品和气象数据,通过几何校正、去云预处理,应用归一化差分积雪指数算法等获取中国境内天山山区积雪覆盖面积数据,分析了积雪面积的时空变化特征及与气温降水的关系。结果表明:(1)年内积雪面积呈单峰变化,9月开始积累,次年1月达峰值,3月气温回暖消融加速,至7月最小。春秋季波动较大但没有明显的增减趋势,夏季积雪面积最小,冬季最大且呈减小趋势。(2)2001-2015年积雪覆盖面积整体上呈减少趋势,积雪覆盖率最大值的波动比最小值的波动更加剧烈。(3)积雪覆盖率随着海拔升高而增大,海拔<1 500 m区域积雪覆盖率低于10%,海拔>4 500 m以上区域平均可达70%,为常年稳定积雪区。积雪覆盖率在西北坡最高,南坡最低。(4)年均气温升高是积雪覆盖面积减小的主因,年积雪覆盖面积变化与年降水量变化保持一致的下降趋势。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号