首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1093篇
  免费   188篇
  国内免费   614篇
测绘学   10篇
大气科学   78篇
地球物理   69篇
地质学   1616篇
海洋学   8篇
综合类   27篇
自然地理   87篇
  2024年   14篇
  2023年   52篇
  2022年   70篇
  2021年   41篇
  2020年   53篇
  2019年   59篇
  2018年   51篇
  2017年   66篇
  2016年   46篇
  2015年   83篇
  2014年   82篇
  2013年   82篇
  2012年   78篇
  2011年   132篇
  2010年   91篇
  2009年   104篇
  2008年   70篇
  2007年   66篇
  2006年   91篇
  2005年   54篇
  2004年   57篇
  2003年   78篇
  2002年   53篇
  2001年   25篇
  2000年   23篇
  1999年   20篇
  1998年   32篇
  1997年   22篇
  1996年   26篇
  1995年   29篇
  1994年   16篇
  1993年   50篇
  1992年   13篇
  1991年   20篇
  1990年   24篇
  1989年   20篇
  1988年   2篇
排序方式: 共有1895条查询结果,搜索用时 46 毫秒
131.
本文基于AMSR2被动微波数据和0 cm地表温度数据,对比分析冻融判别函数算法和双指标算法在东北冻土区的判别精度及适用性。结果表明:(1)两种算法的Kappa系数都在0.7以上,总体判别精度在87%以上,具有较好的性能。(2)两种算法在升轨时期的总体判别精度高于降轨时期。在使用升轨数据时,双指标算法判别精度略高于冻融判别函数算法;使用降轨数据时,冻融判别函数算法判别精度更高。(3)冻融判别函数算法对冻土的判别精度高,双指标算法在识别融土方面具有优势。(4)两种算法对多年冻土区的土壤冻融判别精度高于季节冻土区。本研究的评价结果可为东北冻土区制备高精度、长时序地表冻融数据集提供基础数据资料,为选择合适的土壤冻融判别算法提供参考。  相似文献   
132.
为了揭示路基冻结过程中地下水和土性对水分迁移规律的影响,针对开放体系和封闭体系的粉质黏土和砂土进行了单向冻结条件下的水分迁移试验。通过土柱上层位置设置碎石层,阻断液态水迁移路径,监测冻结过程中土柱的水热变化,结合土柱冻结深度、冻结速率曲线、含水率分布曲线和补水时程曲线,分析仅水汽补给时对土柱顶部水分聚集和冻结特征的影响。试验结果发现,无论是封闭体系还是开放体系,粉质黏土和砂土土柱都会在冻结区中形成两处水分聚集区:第一水分聚集区为控温板底部,以霜的形式聚集,主要是由土柱顶部土体的水汽迁移并凝华相变形成;第二水分聚集区为冻结区中液态水和气态水共同迁移形成,随着冻结锋面的向下推移,形成不连通孔隙的界面,液态水向0℃冰锋线迁移聚集并相变成冰,水汽迁移路径受阻而凝华成冰,致使该处含水率显著增加。相较于封闭体系,开放体系使两处水分聚集区产生更大的水分增量。相比于粉质黏土,砂土介质孔隙较大,在试验时间内水汽补给对水分聚集区的影响更明显,但由于砂土持水能力减弱,水汽补给速率随时间逐渐减小。  相似文献   
133.
《冰川冻土》2023,(4):F0003-F0003
《冰川冻土》聚焦服务于冰冻圈科学及其分支学科,如冰川学、冻土学、寒区工程学、冰冻圈水文学、冰冻圈生态学等学科发展,重点报道冰川(冰盖)、积雪、冻土、海冰等关键冰冻圈要素的过程与机理、冰冻圈变化的影响与适应,以及相关的全球变化方面的基础研究和应用研究。重点关注具有创新性、高水平及对国民经济建设有重要意义的新思想、新观点、新理论和新方法,传播冰冻圈科学与可持续发展相关的科学知识,推动国内外学术交流,服务冰冻圈及其影响区域的经济社会可持续发展。  相似文献   
134.
裂隙中冰夹层的出现及生长是岩体冻胀风化的重要特征及成因,裂隙岩体是由裂隙和岩石基质构成,裂隙与可视为孔隙介质的岩石性质差异巨大,多数情况下是岩体中水分主要的储存及运移通道,对于不饱和裂隙而言,其中往往同时存在着气态迁移和液态迁移,很难直接用既有的原位冻胀和分凝冰机理解释裂隙中冰层形成及生长过程。为研究非饱和岩体裂隙中冰层出现及分布状况,作者用两块水泥试块拼接成带有单条垂直裂隙的岩体试样,并对试样进行了暖端补水条件下的单向冻结试验,试验结束后,试块中新增了3条水平裂隙和1条垂直裂隙,且裂隙中均有薄冰层出现,试样负温区有显著的结霜现象,整个过程中水分迁移总量达221 mL,且以气态形式为主。基于传热学基本原理,建立了自然对流条件下单个裂隙壁面上的结霜模型,根据试验中试样不同冷表面的特征,将结霜表面分为Ⅰ~Ⅲ类,分别计算了三类冷表面上霜层厚度、密度及单位质量随时间的变化,并利用试验结果对计算结果进行了验证,证明了单个壁面上结霜模型的可靠性。以结霜模型为依据,同时结合相关文献进行分析得到:影响岩体裂隙负温区壁面结霜量的直接因素有裂隙中的对流传热条件、空气相对湿度及负温区壁面面积大小,这三个因素取值越大时,则一定时间内裂隙壁面上的结霜量越多,裂隙中的成冰作用更为显著。裂隙沿程的温度梯度则是更为本质的原因,温度梯度越大时,岩体裂隙中的对流传热作用会更为强烈,负温区壁面面积越大,则一定时间内结霜量越多。  相似文献   
135.
《冰川冻土》2023,(1):F0003-F0003
《冰川冻土》聚焦服务于冰冻圈科学及其分支学科,如冰川学、冻土学、寒区工程学、冰冻圈水文学、冰冻圈生态学等学科发展,重点报道冰川(冰盖)、积雪、冻土、海冰等关键冰冻圈要素的过程与机理、冰冻圈变化的影响与适应,以及相关的全球变化方面的基础研究和应用研究。重点关注具有创新性、高水平及对国民经济建设有重要意义的新思想、新观点、新理论和新方法,传播冰冻圈科学与可持续发展相关的科学知识,推动国内外学术交流,服务冰冻圈及其影响区域的经济社会可持续发展。  相似文献   
136.
花岗岩残积土在非饱和状态下的工程性质良好,但其极易受到降雨影响。厦门石鼓山西通道项目的实测数据表明,降雨入渗引起残积土中基坑围护桩变形显著增加。本文采用PLAXIS有限元软件建立数值模型,通过瞬态渗流分析,探究降雨入渗加剧非饱和残积土中基坑变形的机理。结果表明,降雨入渗会显著加剧非饱和残积土中基坑变形,降低基坑的稳定性,其原因是降雨入渗使基坑内外土体饱和度增加,基质吸力降低,进而导致土体抗剪强度减小,同时导致主动土压力增大。相比于低渗透性土,饱和渗透系数较高的残积土层中基坑持力层土体强度更易受到降雨的影响。墙后土体应力路径表明,降雨过程土体所受剪力基本保持不变,基坑变形增加较小,降雨后的清淤开挖使桩后土体达到临界抗剪强度,导致基坑变形急剧增加。  相似文献   
137.
植物已被广泛用于改善岩土设施的服役性能。然而,植物生长对填埋场多层覆盖系统防渗性能的影响尚不清楚。本研究通过在深圳下坪固体废弃物填埋场开展为期两年的现场试验,并利用数值模拟进行对比与参数化分析,旨在量化湿润气候下植物生长对土体水力性质以及三层覆盖系统防渗功能的影响。经研究发现,土体饱和渗透系数(ks)随根长密度(RLD)的增加呈线性下降。相比裸露土,植草土ks、入渗量和入渗速率分别降低55%,18%和35%。这导致在现场监测期间植草覆盖系统中维持的吸力明显高于裸露覆盖系统,数值分析与实测结果相一致。然而,百年一遇降雨后两覆盖系统内吸力分布无显著差异。在两年的现场监测中,相比裸露覆盖系统,草类减少累积渗漏量达21%。通过裸露与植草覆盖系统的年均渗漏量均满足美国环保局建议的每年30 mm的设计要求,证明了没有土工膜的三层覆盖系统在湿润气候下的良好防渗性能。  相似文献   
138.
陈勇  苏剑  曹玲  王力  王世梅 《岩土力学》2022,43(Z2):23-34
土−水特征曲线是非饱和土持水性能和水气运移规律的重要表征,由于其测试过程繁杂、影响因素众多,很难通过系列试验和数学模型全面表达。为探索土的类型和物理状态对土−水特征曲线的影响,以国内外大量试验数据为基础,以反映其形态的3个特征值(进气值、减湿率、残余含水率)为对象,采用数据分析统计方法揭示不同赋存条件对特征值的作用规律,采用机器学习方法探究影响因素的敏感性。研究结果表明:土体的物质组成(颗粒级配、粒径尺度、塑性指数)及赋存状态(密实程度、饱和含水率、干湿循环作用、环境温度)是影响其持水性能的常见分析指标,各影响因素对3个特征值的影响特征既有巨大差异也有相互联系,敏感性成果表明代表黏粒含量的塑性指数和反映密实程度的干密度是影响土体持水性能的最主导因素,给出的特征值分布范围考虑了两个主导因素的影响,具有较强的代表性和借鉴意义。  相似文献   
139.
王飞  李国玉  马巍 《冰川冻土》2022,44(1):217-228
冻土区管道工程建设面临冻土工程特性及相关地质问题的严重挑战,开展管道-冻土相互作用研究对于解决管道稳定性问题具有重要的实际指导意义。综述国内外输油管道-冻土热力相互作用研究进展发现,目前研究集中在特定(定值或周期变化)油温下管周土温度场的定量描述以及差异冻胀/融沉下交界面处管道力学响应规律的解耦分析,缺乏完整时空序列的现场综合观测与管土界面特性及其动态演化研究。对管道防融沉措施进行归纳总结发现,各措施应用效果缺乏管道应力与变形数据的有效支持。应加强管道本身与管道沿线次生冻融灾害监测及相关数据获取,以此为校验开展管土界面特性及演化规律的系统研究,以便构建更为合理的管土接触面单元模型,将其和具有普适性的冻土模型相结合,植入有限元软件提高管土相互作用模型计算可靠性,并建议立足管道变形角度对防融沉措施的工程应用效果予以综合评价。  相似文献   
140.
袁俊  赵杰  唐冲  甘仁钧 《冰川冻土》2022,44(6):1842-1852
Pile foundation is one of the most commonly used and suitable foundations to support transmission line structure, especially in seasonally frozen soil regions and permafrost regions. Axial compression is the controlling condition in the design of foundations for such structures as bridges and buildings, while uplift and overturning will control the design of transmission line structure foundations. This paper presents an extensive overview of previous studies including experimental (e. g., laboratory model test and full-scale field load test), analytical/theoretical (e. g., limit equilibrium and limit analysis based on plasticity)and numerical(e. g., finite difference and finite element methods). The review indicates that study on the uplift behavior of pile foundation in frozen soil is relatively limited, particularly in the case of combined effect of axial uplift and lateral loading. Interaction between pile and frozen soil and mechanism of load transfer along the pile shaft and around the pile tip still remain unclear. Therefore, this paper implements finite difference analysis within FLAC3D to investigate the behavior of pile foundation in frozen silty clay and gravelly sand under axial uplift behavior and the effect of ground condition and lateral loading on the uplift behavior. Because of the axisymmetric condition of the problem studied, only half of the model is simulated. The chosen domain of the medium is discretized into a set of quadrilateral elements and the pile is discretized by the cylinder element. The interaction between the soil and pile is considered according to interface elements. Mohr-Coulomb criterion is adopted to model the soil behavior (perfectly elastic-plastic), while the pile is simply considered as a rigid body. The soil parameters such as Young’s modulus, cohesion and internal friction angle used for numerical analyses are determined by laboratory tests and estimated according to the empirical correlations with in-situ tests. The present numerical modeling is verified with the results from field loading tests on pile foundations in Qinghai-Tibet ±550 kV transmission line project. On this basis, parametric studies are carried out to uncover the behavior of pile in frozen soil. It is observed that pullout is the dominant failure mechanism of pile and the uplift load-displacement curve clearly exhibits an asymptote, consisting of initially linear elastic, nonlinear transition, and finally linear regions. These results are consistent with the observations in a few previous studies. In addition, larger uplift capacity of pile foundation in freezing period and gravelly sand is gained (about 20%). Lateral loading increases the deflection and therefore, decreases the uplift capacity of pile foundation. For the convenience of using the results obtained in practice, the values of uplift factor for pile foundation in silty clay and gravelly sand are provided. Finally, it should be noted that the method used, and the results obtained in the current work could be useful for engineers and designers, at least providing them some qualitative evidence for pile design in seasonally frozen soil regions and permafrost regions. This is important and necessary to ensure the safety of construction in such regions. Meanwhile, numerical analyses in the current work can be a benchmark example for subsequent research studies. © 2022 Science Press (China).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号