首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1899篇
  免费   408篇
  国内免费   854篇
测绘学   45篇
大气科学   205篇
地球物理   493篇
地质学   1566篇
海洋学   274篇
天文学   35篇
综合类   75篇
自然地理   468篇
  2024年   10篇
  2023年   45篇
  2022年   129篇
  2021年   112篇
  2020年   146篇
  2019年   154篇
  2018年   129篇
  2017年   90篇
  2016年   112篇
  2015年   143篇
  2014年   156篇
  2013年   153篇
  2012年   144篇
  2011年   171篇
  2010年   136篇
  2009年   167篇
  2008年   139篇
  2007年   108篇
  2006年   127篇
  2005年   95篇
  2004年   104篇
  2003年   103篇
  2002年   75篇
  2001年   53篇
  2000年   49篇
  1999年   52篇
  1998年   42篇
  1997年   44篇
  1996年   44篇
  1995年   28篇
  1994年   27篇
  1993年   22篇
  1992年   14篇
  1991年   9篇
  1990年   6篇
  1989年   13篇
  1988年   3篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
排序方式: 共有3161条查询结果,搜索用时 31 毫秒
101.
Compaction and associated fluid flow are fundamental processes in sedimentary basin deformation. Purely mechanical compaction originates mainly from pore fluid expulsion and rearrangement of solid particles during burial, while chemo‐mechanical compaction results from Intergranular Pressure‐Solution (IPS) and represents a major mechanism of deformation in sedimentary basins during diagenesis. The aim of the present contribution is to provide a comprehensive 3D framework for constitutive and numerical modeling of purely mechanical and chemo‐mechanical compaction in sedimentary basins. Extending the concepts that have been previously proposed for the modeling of purely mechanical compaction in finite poroplasticity, deformation by IPS is addressed herein by means of additional viscoplastic terms in the state equations of the porous material. The finite element model integrates the poroplastic and poroviscoplastic components of deformation at large strains. The corresponding implementation allows for numerical simulation of sediments accretion/erosion periods by progressive activation/deactivation of the gravity forces within a fictitious closed material system. Validation of the numerical approach is assessed by means of comparison with closed‐form solutions derived in the context of a simplified compaction model. The last part of the paper presents the results of numerical basin simulation performed in one dimensional setting, demonstrating the ability of the modeling to capture the main features in elastoplastic and viscoplastic compaction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
102.
This paper integrates random field simulation of soil spatial variability with numerical modeling of coupled flow and deformation to investigate consolidation in spatially random unsaturated soil. The spatial variability of soil properties is simulated using the covariance matrix decomposition method. The random soil properties are imported into an interactive multiphysics software COMSOL to solve the governing partial differential equations. The effects of the spatial variability of Young's modulus and saturated permeability together with unsaturated hydraulic parameters on the dissipation of excess pore water pressure and settlement are investigated using an example of consolidation in a saturated‐unsaturated soil column because of loading. It is found that the surface settlement and the pore water pressure profile during the process of consolidation are significantly affected by the spatially varying Young's modulus. The mean value of the settlement of the spatially random soil is more than 100% greater than that of the deterministic case, and the surface settlement is subject to large uncertainty, which implies that consolidation settlement is difficult to predict accurately based on the conventional deterministic approach. The uncertainty of the settlement increases with the scale of fluctuation because of the averaging effect of spatial variability. The effects of spatial variability of saturated permeability ksat and air entry parameters are much less significant than that of elastic modulus. The spatial variability of air entry value parameters affects the uncertainties of settlement and excess pore pressure mostly in the unsaturated zone. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
103.
The problem of predicting the geometric structure of induced fractures is highly complex and significant in the fracturing stimulation of rock reservoirs. In the traditional continuous fracturing models, the mechanical properties of reservoir rock are input as macroscopic quantities. These models neglect the microcracks and discontinuous characteristics of rock, which are important factors influencing the geometric structure of the induced fractures. In this paper, we simulate supercritical CO2 fracturing based on the bonded particle model to investigate the effect of original natural microcracks on the induced‐fracture network distribution. The microcracks are simulated explicitly as broken bonds that form and coalesce into macroscopic fractures in the supercritical CO2 fracturing process. A calculation method for the distribution uniformity index (DUI) is proposed. The influence of the total number and DUI of initial microcracks on the mechanical properties of the rock sample is studied. The DUI of the induced fractures of supercritical CO2 fracturing and hydraulic fracturing for different DUIs of initial microcracks are compared, holding other conditions constant. The sensitivity of the DUI of the induced fractures to that of initial natural microcracks under different horizontal stress ratios is also probed. The numerical results indicate that the distribution of induced fractures of supercritical CO2 fracturing is more uniform than that of common hydraulic fracturing when the horizontal stress ratio is small.  相似文献   
104.
This paper investigates the influences of atom--field coupling and dipole--dipole coupling for atoms on the entanglement between two atoms by means of concurrence. The results show that the sudden death occurs when the atom--field coupling is strong enough, and the collapse and the revival appear when the dipole--dipole interaction is strong enough.  相似文献   
105.
Polar regionSq     
Geomagnetically quiet day variations in the polar region are reviewed with respect to geomagnetic field variation, ionospheric plasma convection, electric field and current. Persistently existing field-aligned currents are the main source of the polar regionSq. Consequently, the morphology and variability of the polar regionSq largely depend upon both field-aligned currents and ionospheric conductivity. Since field-aligned currents are the major linkage between the ionosphere and the magnetosphere, the latter is controlled by solar wind state, in particular, the interplanetary magnetic field, the polar regionSq exhibits remarkable IMF dependence.  相似文献   
106.
The 1972 February and December Hachijo-Oki earthquakes (M s=7.3 and 7.4), in the northernmost part of the Izu-Bonin subduction zone, are the only major events (M s>7.0) in the Bonin arc for the past 80 years. Relocation of the hypocenters, using one smaller event having a wellconstrained focal depth as a master event, shows that the depth of the February event is 10 km shallower than that of the December event. We have determined the rupture process for both events by minimizing the error in waveform between observed and synthetic seismograms. Although the number of available stations are limited, the depth range of the major energy release for the December event extends deeper than for the February one. The rupture propagated up-dip for both events. It is likely that the rupture zone of the two events overlapped, and that the December event ruptured the deeper part. This suggestion is consistent with the observation that the aftershock zones of both events overlap with that of the December event shifted landward. The waveforms of the December event have a smaller high frequency component than those of the February event, suggesting that the stress at the thrust zone became more uniform or reduced after the February event.No thrust type smaller event occurred near the rupture zone. Instead, theP-axes of smaller events are parallel to the dip of the slab and theirT-axes dip to the southwest. Focal depths of these events estimated byP-wave forward modeling are generally between 40–50 km and located beneath the thrust zone. We thus interpret them as the events within the Pacific slab near the zone ruptured by the two major events. The stress concentration around the rupture zone of the major events is suggested to have triggered these slab events. After the occurrence of the large events, the slab events are concentrated near the deeper portion of the rupture zone. These events may have been caused by the loading of the down-dip compressional stress near the down-dip end of the rupture zone due to the rupture. The occurrence of the doublet of large earthquakes and a number of down-dip compressional events beneath their rupture zones in a shallow portion of the subducting slab indicates an unusual zone of seismic coupling in the Bonin arc, most of which is seismically quiescent.  相似文献   
107.
The Hikurangi Margin is a region of oblique subduction with northwest-dipping intermediate depth seismicity extending southwest from the Kermadec system to about 42°S. The current episode of subduction is at least 16–20 Ma old. The plate convergence rate varies along the margin from about 60 mm/a at the south end of the Kermadec Trench to about 45 mm/a at 42°S. The age of the Pacific lithosphere adjacent to the Hikurangi Trench is not known.The margin divides at about latitude 39°S into two quite dissimilar parts. The northern part has experienced andesitic volcanism for about 18 Ma, and back-arc extension in the last 4 Ma that has produced a back-arc basin onshore with high heaflow, thin crust and low upper-mantle seismic velocities. The extension appears to have arisen from a seawards migration of the Hikurangi Trench north of 39°S. Here the plate interface is thought to be currently uncoupled, as geodetic data indicate extension of the fore-arc basin, and historic earthquakes have not exceededM s=7.South of 39°S there is no volcanism and a back-arc basin has been produced by downward flexure of the lithosphere due to strong coupling with the subducting plate. Heatflow in the basin is normal. Evidence for strong coupling comes from historic earthquakes of up to aboutM s=8 and high rates of uplift on the southeast coast of the North Island.The reason for this division of the margin is not known but may be related to an inferred increase, from northeast to southwest, in the buoyancy of the Pacific lithosphere.  相似文献   
108.
Summary A method of measuring ultrasonic wave properties in rocks during the complete stress-strain process is described. The relevant experimental laboratory study, to reveal the change of the amplitude spectrum parameters with strain (or stress) has been carried out. A preliminary study was conducted on the application of the ultrasonic measurement technique at a belt conveyor roadway of the north wing in Baodian coal mine, Shandong province. A borehole ultrasonic device with dry coupling was developed to provide better coupling and more accurate measurement data in comparison with those of a water coupled situation. Based on the interrelations between the complete stress-strain properties of specimens and their wave properties, the structural properties of surrounding rocks, the range of yield zones, and the change of stresses within the rocks surrounding a roadway which was subjected to mining influence of upper longwall face were analysed. Amplitude spectrum parameters were used to give a better prediction of the physico-mechanical state of the surrounding rocks.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号