首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4186篇
  免费   924篇
  国内免费   2611篇
测绘学   81篇
大气科学   56篇
地球物理   1028篇
地质学   5838篇
海洋学   192篇
天文学   64篇
综合类   116篇
自然地理   346篇
  2024年   23篇
  2023年   111篇
  2022年   222篇
  2021年   249篇
  2020年   233篇
  2019年   324篇
  2018年   317篇
  2017年   407篇
  2016年   365篇
  2015年   378篇
  2014年   391篇
  2013年   619篇
  2012年   444篇
  2011年   349篇
  2010年   311篇
  2009年   360篇
  2008年   331篇
  2007年   340篇
  2006年   347篇
  2005年   255篇
  2004年   269篇
  2003年   173篇
  2002年   114篇
  2001年   93篇
  2000年   115篇
  1999年   84篇
  1998年   63篇
  1997年   101篇
  1996年   57篇
  1995年   47篇
  1994年   35篇
  1993年   32篇
  1992年   30篇
  1991年   25篇
  1990年   19篇
  1989年   15篇
  1988年   15篇
  1987年   14篇
  1986年   9篇
  1985年   9篇
  1984年   9篇
  1983年   3篇
  1982年   1篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1877年   1篇
排序方式: 共有7721条查询结果,搜索用时 375 毫秒
71.
In the Saxothuringian part of the Vosges (France), a first series of Variscan plutonic rocks (diorites to granites) has been intruded by several younger granites. Rocks of both the older generations have been cross-cut by the late orogenic Kagenfels granite. The averages of the hitherto published mineral ages of the earlier rock generations are 331 and 334 Ma, respectively, whereas Rb-Sr and K-Ar dates around 290 Ma have been reported for the Kagenfels granite. Because of the unlikely large age hiatus, a redetermination of the intrusion age of the Kagenfels granite formation appeared to be irrevocable. The newly obtained mineral ages on the Kagenfels granite (K-Ar and 40Ar/39Ar biotite ages as well as single zircon radiogenic 207Pb/206Pb data: 331 ± 5 Ma) are about 40 Ma older than the previous results. They are interpreted as giving the time of emplacement of the Kagenfels granite during the latest Visan. The mineral ages of the earlier plutonic rocks in this part of the Variscan Orogeny in all probability are not significantly different from their ages of intrusion. Therefore the age concordance of all three granitoid generations constrains a rather narrow time interval of orogenic magmatism close to the Lower-Upper Carboniferous boundary.  相似文献   
72.
A. Coradini  G. Magni 《Icarus》1984,59(3):376-391
A detailed computation on the equilibrium structure of an accretion disk around Saturn from which the regular satellites presumably originated is reported. Such a disk is the predecessor of the self-dissipating disk that is formed when the mass infall stops (Cassen and Moosman, 1981, Icarus48, 353–376). When determining the disk structure local energy balance was assumed. Convention was taken into account by introducing local energy dissipation and, in an approximate manner, sonic convection. Changes in the disk structure were investigated by varying the free parameters, i.e., the external flux from both the protosun and the protoplanet, the abundance of dust and the strength of turbulence. It has been verified that the external energy flux does not play an important role in the evolution of the disk structure. Models characterized by either longer times (?3 103 year) or a noticeable depletion of condensable elements (10?2 times less than the solar value) have a total mass of the order of 0.34?0.1 times the mass of the regular satellites increased by the mass of the light elements. Low turbulence models (Reynolds critical number Re1 = 150) are characterized approximately by a total mass twice as large the mass of the regular satellites. All the studied models present a temperature distribution that allows the condensation of iron, silicate, and, in the outer regions, ice grains. All models but the one with 10?2 of the solar value of condensable elements are characterized by a wide convective region that contains the formation zone of the regular satellites.  相似文献   
73.
The La Guitarra deposit (Temascaltepec district, South-Central Mexico), belongs to the low/intermediate sulfidation epithermal type, has a polymetallic character although it is currently being mined for Ag and Au. The mineralization shows a polyphasic character and formed through several stages and sub-stages (named I, IIA, IIB, IIC, IID, and III). The previous structural, mineralogical, fluid inclusion and stable isotope studies were used to constrain the selection of samples for volatile and helium isotope analyses portrayed in this study. The N2/Ar overall range obtained from analytical runs on fluid inclusion volatiles, by means of Quadrupole Mass Spectrometry (QMS), is 0 to 2526, and it ranges 0 to 2526 for stage I, 0 to 1264 for stage IIA, 0 to 1369 for stage IIB, 11 to 2401 for stage IIC, 19 to 324 for stage IID, and 0 to 2526 for stage III. These values, combined with the CO2/CH4 ratios, and N2-He-Ar and N2-CH4-Ar relationships, suggest the occurrence of fluids from magmatic, crustal, and shallow meteoric sources in the forming epithermal vein deposit. The helium isotope analyses, obtained by means of Noble Gas Mass Spectrometry, display R/Ra average values between 0.5 and 2, pointing to the occurrence of mantle-derived helium that was relatively diluted or “contaminated” by crustal helium. These volatile analyses, when correlated with the stable isotope data from previous works and He isotope data, show the same distribution of data concerning sources for mineralizing fluids, especially those corresponding to magmatic and crustal sources. Thus, the overall geochemical data from mineralizing fluids are revealed as intrinsically consistent when compared to each other.The three main sources for mineralizing fluids (magmatic, and both deep and shallow meteoric fluids) are accountable at any scale, from stages of mineralization down to specific mineral associations. The volatile and helium isotope data obtained in this paper suggest that the precious metal-bearing mineral associations formed after hydrothermal pulses of predominantly oxidized magmatic fluids, and thus it is likely that precious metals were carried by fluids with such origin. Minerals from base-metal sulfide associations record both crustal and magmatic sources for mineralizing fluids, thus suggesting that base metals could be derived from deep leaching of crustal rocks. At the La Guitarra epithermal deposit there is no evidence for an evolution of mineralizing fluids towards any dominant source. Rather than that, volatile analyses in fluid inclusions suggest that this deposit formed as a pulsing hydrothermal system where each pulse or set of pulses accounts for different compositions of mineralizing fluids.The positive correlation between the relative content of magmatic fluids (high N2/Ar ratios) and H2S suggests that the necessary sulfur to carry mostly gold as bisulfide complexes came essentially from magmatic sources. Chlorine necessary to carry silver and base metals was found to be abundant in inclusion fluids and although there is no evidence about its source, it is plausible that it may come from magmatic sources as well.  相似文献   
74.
Lateral moraines constructed along west to east sloping outlet glaciers from mountain centred, pre-last glacial maximum (LGM) ice fields of limited extent remain largely preserved in the northern Swedish landscape despite overriding by continental ice sheets, most recently during the last glacial. From field evidence, including geomorphological relationships and a detailed weathering profile including a buried soil, we have identified seven such lateral moraines that were overridden by the expansion and growth of the Fennoscandian ice sheet. Cosmogenic 10Be and 26Al exposure ages of 19 boulders from the crests of these moraines, combined with the field evidence, are correlated to episodes of moraine stabilisation, Pleistocene surface weathering, and glacial overriding. The last deglaciation event dominates the exposure ages, with 10Be and 26Al data derived from 15 moraine boulders indicating regional deglaciation 9600 ± 200 yr ago. This is the most robust numerical age for the final deglaciation of the Fennoscandian ice sheet. The older apparent exposure ages of the remaining boulders (14,600-26,400 yr) can be explained by cosmogenic nuclide inheritance from previous exposure of the moraine crests during the last glacial cycle. Their potential exposure history, based on local glacial chronologies, indicates that the current moraine morphologies formed at the latest during marine oxygen isotope stage 5. Although numerous deglaciation ages were obtained, this study demonstrates that numerical ages need to be treated with caution and assessed in light of the geomorphological evidence indicating moraines are not necessarily formed by the event that dominates the cosmogenic nuclide data.  相似文献   
75.
Integration of fluid inclusion analysis with high spatial resolution Ar–Ar dating of K-feldspar cements has been used to resolve and reconstruct palaeo-fluid flow. Fluid inclusion analysis allows discrimination of distinct cement phases, thereby identifying discrete episodes of fluid flow. Ar–Ar dating of the same cements via high spatial resolution laserprobe establishes absolute age constraints on the framework previously constructed. Integration of these two datasets yields temperature–composition–time data.  相似文献   
76.
Ion microprobe U–Pb dating of zircons from Neoproterozoic volcano-sedimentary sequences in Cameroon north of the Congo craton is presented. For the Poli basin, the depositional age is constrained between 700–665 Ma; detrital sources comprise ca. 920, 830, 780 and 736 Ma magmatic zircons. In the Lom basin, the depositional age is constrained between 613 and 600 Ma, and detrital sources include Archaean to Palaeoproterozoic, late Mesoproterozoic to early Neoproterozoic (1100–950 Ma), and Neoproterozoic (735, 644 and 613 Ma) zircons. The Yaoundé Group is probably younger than 625 Ma, and detrital sources include Palaeoproterozoic and Neoproterozoic zircons. The depositional age of the Mahan metavolcano-sedimentary sequence is post-820 Ma, and detrital sources include late Mesoproterozoic (1070 Ma) and early Neoproterozoic volcanic rocks (824 Ma). The following conclusions can be made from these data. (1) The three basins evolved during the Pan-African event but are significantly different in age and tectonic setting; the Poli is a pre- to syn-collisional basin developed upon, or in the vicinity of young magmatic arcs; the Lom basin is post-collisional and intracontinental and developed on old crust; the tectono-metamorphic evolution of the Yaoundé Group resulted from rapid tectonic burial and subsequent collision between the Congo craton and the Adamawa–Yade block. (2) Late Mesoproterozoic to early Neoproterozoic inheritance reflects the presence of magmatic event(s) of this age in west–central Africa.  相似文献   
77.
The pre-Holocene Cenozoic sequence outcrops in the terrestrial part of the eastern margin of the Mekong Basin. However, the stratigraphy of the sequence is still unclear. Its detailed stratigraphy and chronology were therefore studied along the Dong Nai River, southern Vietnam, and the lithofacies and the relations among the formations were investigated from the outcrops. The ages of the deposits were determined by using optically stimulated luminescence (OSL) dating.The Ba Mieu Formation was deposited about 176±52 ka during marine isotope stage (MIS) 7–6. The Thu Duc Formation was deposited about 97±27 ka during MIS 5. Both the Ba Mieu and Thu Duc formations are composed of fluvial and tidally influenced coastal deposits. The newly proposed Nhon Trach Formation was originally an eolian (blanket) deposit, but it has been partly reworked by fluvial processes. The Nhon Trach Formation was deposited about 10.9±4.7 ka, in the last part of the Pleistocene to the beginning of the Holocene. The OSL ages for the Ba Mieu, Thu Duc, and Nhon Trach formations are younger than the ages previously assigned to these formations.  相似文献   
78.
Ice and snow have often helped physicists understand the world. On the contrary it has taken them a very long time to understand the flow of the glaciers. Naturalists only began to take an interest in glaciers at the beginning of the 19th century during the last phase of glacier advances. When the glacier flow from the upslope direction became obvious, it was then necessary to understand how it flowed. It was only in 1840, the year of the Antarctica ice sheet discovery by Dumont d'Urville, that two books laid the basis for the future field of glaciology: one by Agassiz on the ice age and glaciers, the other one by canon Rendu on glacier theory. During the 19th century, ice flow theories, adopted by most of the leading scientists, were based on melting/refreezing processes. Even though the word ‘fluid’ was first used in 1773 to describe ice, more the 130 years would have to go by before the laws of fluid mechanics were applied to ice. Even now, the parameter of Glen's law, which is used by glaciologists to model ice deformation, can take a very wide range of values, so that no unique ice flow law has yet been defined. To cite this article: F. Rémy, L. Testut, C. R. Geoscience 338 (2006).  相似文献   
79.
Analysis of monthly mean river temperatures, recorded on an hourly basis in the middle reaches of the Loire since 1976, allows reconstruction by multiple linear regression of the annual, spring and summer water temperatures from equivalent information on air temperatures and river discharge. Since 1881, the average annual and summer temperatures of the Loire have risen by approximately 0.8?°C, this increase accelerating since the late 1980s due to the rise in air temperature and also to lower discharge rates. In addition, the thermal regime in the Orleans to Blois reach is considerably affected by the inflow of groundwater from the Calcaires de Beauce aquifer, as shown by the summer energy balance. To cite this article: F. Moatar, J. Gailhard, C. R. Geoscience 338 (2006).  相似文献   
80.
The cereal soils of the Northwest of Tunisia derive most of the time, from alluvial deposits or altered remains of carbonated and clayey rocks. Extraction of the clayey fraction permitted to reveal the presence of the following clayey minerals: kaolinite, illite, smectite, chlorite, as well as an illite–smectite interstratified layer, which is present in the deep horizons of the vertisol and in the isohumic soil. The presence of such types of clays shows that the evolution mechanism of soils is weathering of primary minerals inherited from the sedimentary rocks of the Northwest of Tunisia. These clays ensure to soils most of their cationic exchange capacity. Thanks to these clays, which have Ca++, Mg++ and K+ as exchangeable cations, the chemical fertility of these soils is ensured. It may be improved by increasing contents of organic matter, which is naturally few abundant in these soils. To cite this article: H. Ben Hassine, C. R. Geoscience 338 (2006).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号