首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   201篇
  免费   4篇
  国内免费   13篇
地球物理   19篇
地质学   38篇
海洋学   14篇
天文学   147篇
  2024年   1篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   6篇
  2013年   10篇
  2012年   10篇
  2011年   6篇
  2010年   6篇
  2009年   9篇
  2008年   26篇
  2007年   32篇
  2006年   22篇
  2005年   7篇
  2004年   7篇
  2003年   2篇
  2002年   7篇
  2001年   3篇
  2000年   7篇
  1999年   3篇
  1998年   5篇
  1997年   4篇
  1996年   3篇
  1995年   6篇
  1994年   2篇
  1993年   4篇
  1992年   4篇
  1991年   1篇
  1988年   1篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
排序方式: 共有218条查询结果,搜索用时 15 毫秒
121.
A toy model for magnetic extraction of energy from black hole (BH) accretion disk is discussed by considering the restriction of the screw instability to the magnetic field configuration. Three mechanisms of extracting energy magnetically are involved. (1) The Blandford–Znajek (BZ) process is related to the open magnetic field lines connecting the BH with the astrophysical load; (2) the magnetic coupling (MC) process is related to the closed magnetic field lines connecting the BH with its surrounding disk; and (3) a new scenario (henceforth the DL process) for extracting rotational energy from the disk is related to the open field lines connecting the disk with the astrophysical load. The expressions for the electromagnetic powers and torques are derived by using the equivalent circuits corresponding to the above energy mechanisms. It turns out that the DL power is comparable with the BZ and MC powers as the BH spin approaches unity. The radiation from a quasi-steady thin disk is discussed in detail by applying the conservation laws of mass, energy and angular momentum to the regions corresponding to the MC and DL processes. In addition, the poloidal currents and the current densities in BH magnetosphere are calculated by using the equivalent circuits.  相似文献   
122.
Understanding sediment movement in coastal areas is crucial in planning the stability of coastal structures, the recovery of coastal areas, and the formation of new coast. Accretion or erosion profiles form as a result of sediment movement. The characteristics of these profiles depend on the bed slope, wave conditions, and sediment properties. Here, experimental studies were performed in a wave flume with regular waves, considering different values for the wave height (H0), wave period (T), bed slope (m), and mean sediment diameter (d50). Accretion profiles developed in these experiments, and the geometric parameters of the resulting berms were determined. Teaching–learning-based optimization (TLBO) and artificial bee colony (ABC) algorithms were applied to regression functions of the data from the physical model. Dimensional and dimensionless equations were found for each parameter. These equations were compared to data from the physical model, to determine the best equation for each parameter and to evaluate the performances of the TLBO and ABC algorithms in the estimation of the berm parameters. Compared to the ABC algorithm, the TLBO algorithm provided better accuracy in estimating the berm parameters. Overall, the equations successfully determined the berm parameters.  相似文献   
123.

We explore the f -effect and the small-scale current helicity, , for the case of weakly compressible magnetically driven turbulence that is subjected to the differential rotation. No restriction is applied to the amplitude of angular velocity, i.e., the derivations presented are valid for an arbitrary Coriolis number, z * = 2 z cor , though the differential rotation itself is assumed to be weak. The expressions obtained are used to explore the possible distributions of f -effect and h c in convection zones (CZ) of the solar-type stars. Generally, our theory gives f { { > 0 in the northern hemisphere of the Sun and the opposite case in the southern hemisphere. In most cases the h c has the opposite sign to f { { . However, we show that in the depth of CZ where the influence of rotation upon turbulence (associated with z *) and the radial shear of angular velocity are strong, the distribution of f { { might be drastically different from a classical cos è -dependence, where è is colatitude. It is shown that f { { has a negative sign at the bottom and below of CZ at mid latitudes. There, the distribution of h c is also different from cos è , but it does not change its sign with the depth. Further, we briefly consider these quantities in the disk geometry. The application of the developed theory to dynamos in the accretion disk is more restrictive because they usually have a strong differential rotation, | ‘ log z / ‘ log r | > 1.  相似文献   
124.
125.
Recent measurements of the surface magnetic fields of classical T Tauri stars (CTTSs) and magnetic cataclysmic variables show that their magnetic fields have a complex structure. Investigation of accretion onto such stars requires global three-dimensional (3D) magnetohydrodynamic (MHD) simulations, where the complexity of simulations strongly increases with each higher-order multipole. Previously, we were able to model disc accretion onto stars with magnetic fields described by a superposition of dipole and quadrupole moments. However, in some stars, like CTTS V2129 Oph and BP Tau, the octupolar component is significant and it was necessary to include the next octupolar component. Here, we show results of global 3D MHD simulations of accretion onto stars with superposition of the dipole and octupole fields, where we vary the ratio between components. Simulations show that if octupolar field strongly dominates at the disc-magnetosphere boundary, then matter flows into the ring-like octupolar poles, forming ring-shape spots at the surface of the star above and below equator. The light-curves are complex and may have two peaks per period. In case where the dipole field dominates, matter accretes in two ordered funnel streams towards poles, however the polar spots are meridionally-elongated due to the action of the octupolar component. In the case when the fields are of similar strengths, both, polar and belt-like spots are present. In many cases the light-curves show the evidence of complex fields, excluding the cases of small inclinations angles, where sinusoidal light-curve is observed and ‘hides’ the information about the field complexity.We also propose new mechanisms of phase shift in stars with complex magnetic fields. We suggest that the phase shifts can be connected with: (1) temporal variation of the star’s intrinsic magnetic field and subsequent redistribution of main magnetic poles; (2) variation of the accretion rate, which causes the disc to interact with the magnetic fields associated with different magnetic moments. We use our model to demonstrate these phase shift mechanisms, and we discuss possible applications of these mechanisms to accreting millisecond pulsars and young stars.  相似文献   
126.
The normal mode oscillations of thin accretion disks around black holes and other compact objects are analyzed and contrasted with those in stars. For black holes, the most robust modes are gravitationally trapped near the radius at which the radial epicyclic frequency is maximum. Their eigenfrequencies depend mainly on the mass and angular momentum of the black hole. The fundamental g-mode has recently been seen in numerical simulations of black hole accretion disks. For stars such as white dwarfs, the modes are trapped near the inner boundary (magnetospheric or stellar) of the accretion disk. Their eigenfrequencies are approximately multiples of the (Keplerian) angular velocity of the inner edge of the disk. The relevance of these modes to the high frequency quasi-periodic oscillations observed in the power spectra of accreting binaries will be discussed. In contrast to most stellar oscillations, most of these modes are unstable in the presence of viscosity (if the turbulent viscosity induced by the magnetorotational instability acts hydrodynamically).  相似文献   
127.
After twelve years have past since the discovery of the first high-frequency quasi-periodic oscillation in Sco X-1, an enormous progress has been made on the observational side and on the field of data analysis. Equal amount of effort has been devoted also to the theoretical aspect of the QPO problem. However, so far no model is able to sufficiently fully explain the mechanism of QPO production. There are two aspects: the question of the QPO origin; and the question of its modulation. In this article, I am focusing solely on the second issue – I discuss ways of how the outgoing flux can be modulated at a level sufficient to match the observational rms amplitudes. Some more space is devoted to my own work in the field.  相似文献   
128.
Active galactic nuclei (AGNs) form two distinct sequences on the radio-loudness–Eddington ratio plane. The ‘upper’ sequence contains radio selected AGNs, the ‘lower’ sequence is composed mainly of optically selected AGNs. The sequences mark the upper bounds for the radio-loudness of two distinct populations of AGNs, hosted, respectively, by elliptical and disk galaxies. Both sequences show the same dependence of the radio-loudness on the Eddington ratio (an increase with decreasing Eddington ratio), which suggests that another parameter in addition to the accretion rate must play a role in determining the efficiency of jet production in AGNs. We speculate that this additional parameter is the spin of the black hole, assuming that black holes in giant elliptical galaxies have (on average) much larger spins than black holes in disc galaxies. Possible evolutionary scenarios leading to such a spin dichotomy are discussed. The galaxy-morphology related radio dichotomy breaks down at high accretion rates where the dominant fraction of luminous quasars being hosted by giant ellipticals is radio-quiet. This indicates that the production of powerful jets at high accretion rates is in most cases suppressed and, in analogy to X-ray binary systems (XRB) during high and very high states, may be intermittent. Such intermittency can be caused by switches between two different accretion modes, assuming that only during one of them an outflow from the central engine is sufficiently collimated to form a relativistic jet.  相似文献   
129.
Evidence for the accretion of cold gas in galaxies has been rapidly accumulating in the past years. HI observations of galaxies and their environment have brought to light new facts and phenomena which are evidence of ongoing or recent accretion: (1) A large number of galaxies are accompanied by gas-rich dwarfs or are surrounded by HI cloud complexes, tails and filaments. This suggests ongoing minor mergers and recent arrival of external gas. It may be regarded, therefore, as direct evidence of cold gas accretion in the local universe. It is probably the same kind of phenomenon of material infall as the stellar streams observed in the halos of our galaxy and M 31. (2) Considerable amounts of extra-planar HI have been found in nearby spiral galaxies. While a large fraction of this gas is undoubtedly produced by galactic fountains, it is likely that a part of it is of extragalactic origin. Also the Milky Way has extra-planar gas complexes: the Intermediate- and High-Velocity Clouds (IVCs and HVCs). (3) Spirals are known to have extended and warped outer layers of HI. It is not clear how these have formed, and how and for how long the warps can be sustained. Gas infall has been proposed as the origin. (4) The majority of galactic disks are lopsided in their morphology as well as in their kinematics. Also here recent accretion has been advocated as a possible cause. In our view, accretion takes place both through the arrival and merging of gas-rich satellites and through gas infall from the intergalactic medium (IGM). The new gas could be added to the halo or be deposited in the outer parts of galaxies and form reservoirs for replenishing the inner parts and feeding star formation. The infall may have observable effects on the disk such as bursts of star formation and lopsidedness. We infer a mean “visible” accretion rate of cold gas in galaxies of at least . In order to reach the accretion rates needed to sustain the observed star formation (), additional infall of large amounts of gas from the IGM seems to be required.  相似文献   
130.
New W isotope data for ferroan anorthosites 60025 and 62255 and low-Ti mare basalt 15555 show that these samples, contrary to previous reports [Lee, D.C., et al., 1997. Science 278, 1098-1103; Lee, D.C., et al., 2002. Earth Planet. Sci. Lett. 198, 267-274], have a W isotope composition that is indistinguishable from KREEP and other mare basalts. This requires crust extraction on the Moon later than ∼60 Myr after CAI formation, consistent with 147Sm-143Nd ages for ferroan anorthosites. The absence of 182Hf-induced 182W variations in the Moon is consistent with formation of the Moon at after CAI formation that has been inferred based on the indistinguishable 182W/184W ratios of the bulk Moon and the bulk silicate Earth. The uncertainties on the age of the Moon and the age of the oldest lunar samples currently hamper a precise determination of the duration of magma ocean solidification and are consistent with both an almost immediate crystallization and a more protracted timescale of ∼100 Myr.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号