首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   3篇
  国内免费   2篇
测绘学   1篇
地球物理   29篇
地质学   42篇
海洋学   3篇
综合类   2篇
自然地理   3篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   8篇
  2013年   7篇
  2012年   2篇
  2011年   5篇
  2010年   2篇
  2009年   7篇
  2008年   5篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   9篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1998年   3篇
  1996年   2篇
  1993年   2篇
排序方式: 共有80条查询结果,搜索用时 296 毫秒
61.
We present three geomorphologic and geological phenomena that have occurred in Algeria in recent years: (i) the Bab El Oued mudflow on 11 November 2001, which claimed several hundred lives, (ii) a soil collapse induced by sand liquefaction triggered by the Boumerdes earthquake (M w = 6.8) on 21 May 2003, and (iii) landslides that are threatening Constantine city, for which a hazard map is presented using a qualitative approach. We briefly describe and analyze these natural disasters, and in the first two cases propose the application of geophysical techniques such as ambient noise recordings and electrical imagery to help evaluate their extent and potential threat. Finally a landslide hazard map of Constantine is proposed.  相似文献   
62.
Abstract

Abstract Four rainfall–runoff models were applied on a daily time step and tested in the Cheffia basin, situated in the northeast of Algeria. The models belong to two categories: conceptual models–the GR3j model and the CREC model with eight parameters, and ?black box? models–the ARMAX model and a neuro-fuzzy model, which combines neural structure and fuzzy logic. The models were compared over two periods, one dry and the other wet. This comparison allowed a better model for the rainfall–runoff process to be proposed, on a daily time step, by combining the conceptual approach with a neuro-fuzzy system.  相似文献   
63.
Numerous ultramafic xenoliths occur within the A??n–Temouchent volcanic complex (Northwestern Oranie, Algeria). Most of them are type I mantle tectonites (lherzolites and harzburgites) and composite xenoliths (harzburgite/clinopyroxenite) are rare. Only a few samples of spinel lherzolites display relatively fertile compositions when the major part of type I xenoliths have refractory major element compositions but enriched LREE contents showing that they have been affected by mantle metasomatism. The composite xenoliths are witnesses of reactions of alkaline magmas with the upper mantle. An asthenospheric rising, in relation with the large strike slip fault affecting the North African plate margin at Trias time is proposed as a possible geodynamical setting. To cite this article: M. Zerka et al., C. R. Geoscience 334 (2002) 387–394.  相似文献   
64.
This paper presents the evaluation of seismic hazard at the site of Algiers (capital of Algeria). In order to implement earthquake-resistant design codes, it is usually necessary to know the maximum dynamic load which a particular structure might experience during its economic life, or alternatively, the most probable return period of a specified design load. The evaluation of the seismic hazard at the site, based on peak ground motion acceleration and using Cornell's method and Benouar's earthquake Maghreb catalogue, in terms of return period, probability of exceedance of PGA, design ground motion and a response spectrum, is carried out for the City of Algiers and its surroundings. The response spectrum for Algiers presented in this paper is the first one realized in Algeria using revised Algerian data.  相似文献   
65.
The Algiers–Boumerdes region has been struck by a destructive magnitude 6.8 (Mw) earthquake on May 21, 2003. The study presented in this paper is based on main shock strong motions from 13 stations of the Algerian accelerograph network. A maximum 0.58g peak ground acceleration (PGA) has been recorded at 20 km from the epicenter, only about 150 m away from a PGA of 0.34g, with both a central frequency around 5 Hz, explained by a strong very localized site effect, confirmed by receiver function technique results showing peaks at 5 Hz with amplitudes changing by a factor of 2. Soil amplifications are also evidenced at stations located in the quaternary Mitidja basin, explaining the higher PGA values recorded at these stations than at stations located on firm soil at similar distances from the epicenter. A fault-related directionality effect observed on the strong motion records and confirmed by the study of the seismic movement anisotropy, in agreement with the N65 fault plan direction, explains the SW–NE orientation of the main damage zone. In the near field, strong motions present a high-frequency content starting at 3 Hz with a central frequency around 8 Hz, while in the far field their central frequency is around 3 Hz, explaining the high level of damage in the 3- to 4-story buildings in the epicentral zone. The design spectra overestimate the recorded mean response spectra, and its high corner frequency is less than the recorded one, leading to a re-examination of the seismic design code that should definitively integrate site-related coefficient, to account for the up to now neglected site amplification, as well as a re-modeling of the actual design spectra. Finally, both the proposed Algerian attenuation law and the worldwide laws usually used in Algeria underestimate the recorded accelerations of the 6.8 (Mw) Boumerdes earthquake, clearly showing that it is not possible to extrapolate the proposed Algerian law to major earthquakes.  相似文献   
66.
Seismic hazard in terms of spectral acceleration (SA) has been estimated for the first time in northern Algeria. For this purpose, we have used the spatially-smoothed seismicity approach. The present paper is intended to be a continuation of previous work in which we have evaluated the seismic hazard in terms of peak ground acceleration (PGA) using the same methodology. To perform these evaluations, four complete and Poissonian seismic models have been used. One of them considers earthquakes with magnitudes above MS 6.5 in the last 300 years, that is, the most energetic seismicity in the region. Firstly, seismic hazard maps in terms of SA, at periods of 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 1.5 and 2.0 sec, with 39.3% and 10% probability of exceedance in 50 years, have been obtained. Therefore, uniform hazard spectra (UHS) are computed and examined in detail for twelve of the most industrial and populated cities in northern Algeria. All the reported results in this study are for rock soil and 5% of damping. It is noteworthy that, in the seismic hazard maps as well as in the UHS plots, we observe maximum SA values in the central area of the Tell. The higher values are reached in the Chleff region (previously El Asnam), specifically around the location of the destructive earthquakes of September 9, 1954 (MS 6.8), and October 10, 1980 (MS 7.3). These maximum values, 0.4 g and 1.0 g, are associated with periods of about 0.2 and 0.3 sec for return periods of 100 and 475 years, respectively.  相似文献   
67.
A shallow moderate (M s=5.7) but damaging earthquake shook theregion of Beni-Ourtilane located about 50 km NW of Setif and 390 kmNE of Algiers (Central Eastern Algeria). The main shock caused the deathof 2 peoples, injured 50 and caused sustainable damage to about 3000housing units. The main shock was preceded by 2 foreshocks and followedby many aftershocks which lasted for many days. Analysis of historicalseismicity including the localisation of epicenters, the trend of isoseismalmaps of some historical events, the localisation of the November 10, 2000main shock (M s=5.7) and the November 16, 2000 aftershock(M s=4.5) as well as the shape of the area of maximum intensity ofthe November 10, 2000 earthquake suggest that the Tachaouaft fault of20 km of length is the activated geological structure. Although, there isno clear surface breaks associated with this earthquake, the localisation ofgeological disorders, such as ground fissures, during the Beni-Ourtilaneearthquake, which are remarkably located near the fault, may have atectonic meaning. Geomorphological analysis through Digital ElevationModels (DEMs) allowed us to identify a clear fault scarp related likely tostrong earthquakes occurred in the past. Among geomorphologicalevidences of this active fault there are the uplift and tilt of alluvial terraceson the hanging wall and the diversion of the drainage pattern. Based onthe quality of constructions and field observations an intensity I 0 = VII (MSK scale) is attributed to the epicentral area,which is striking NE-SW in agreement with the focal mechanism solutionand the seismotectonic observations. In the other hand the amount ofdamage is due rather to the bad quality of constructions than to theseverity of ground motion. The Tachaouaft fault with the Kherrata fault isthe main source of seismic hazard in the Babors region.  相似文献   
68.
As large destructive seismic events are not frequent in Algeria, anexhaustive knowledge of the historical seismicity is required to have arealistic view of seismic hazard in this part of the world. This research workpresents a critical reappraisal of seismicity in the north-eastern Algeria forseismotectonic and seismic hazard purposes. This part of work focuses onthe seismicity of pre-1900 period for the area under consideration[33°N-38°N, 4°E-9.5°E]. By going back tothe available documentary sources and evaluating and analysing the eventsin geographical, cultural and historical context, it has been possible toidentify 111 events, from 1850–1899, which are not reported in therecent Algerian catalogue. Several spurious events, reported in standardlistings, have been deleted and nine unknown events have been discovered.It is quite clear that macroseismic information derived from press reportsand published documents in Algeria, under certain conditions, is veryincomplete, even for destructive earthquakes, located in the countrysideaway from communication centres. One of the reasons for this iscensorship, noticeable during the colonisation period. Critical analysis ofnewly collected information has allowed the determination and/or theimprovement of the macroseismic parameters of each event, such aslocation, maximum epicentral intensity and magnitude to produce anearthquake catalogue as homogeneous and complete as the available data,for the zone under study. The criteria used in this research are explainedand eight historical earthquakes have been the subject of retrospectivemacroseismic field construction.The investigation of historical earthquakes is one of the most important taskin studying seismotectonic for seismic hazard evaluation purposes.  相似文献   
69.
The hydrogeochemical and isotopic evolution of groundwaters in the Mio–Pliocene sands of the Complexe Terminal (CT) aquifer in central Algeria are described. The CT aquifer is located in the large sedimentary basin of the Great Oriental Erg. Down-gradient groundwater evolution is considered along the main representative aquifer cross section (south–north), from the southern recharge area (Tinrhert Plateau and Great Oriental Erg) over about 700 km. Groundwater mineralisation increases along the flow line, from 1.5 to 8 g l?1, primarily as a result of dissolution of evaporite minerals, as shown by Br/Cl and strontium isotope ratios. Trends in both major and trace elements demonstrate a progressive evolution along the flow path. Redox reactions are important and the persistence of oxidising conditions favours the increase in some trace elements (e.g. Cr) and also NO3 ?, which reaches concentrations of 16.8 mg l?1 NO3-N. The range in 14C, 0–8.4 pmc in the deeper groundwaters, corresponds with late Pleistocene recharge, although there then follows a hiatus in the data with no results in the range 10–20 pmc, interpreted as a gap in recharge coincident with hyper-arid but cool conditions across the Sahara; groundwater in the range 24.7–38.9 pmc signifies a distinct period of Holocene recharge. All δ18O compositions are enriched relative to deuterium and are considered to be derived by evaporative enrichment from a parent rainfall around ?11‰ δ18O, signifying cooler conditions in the late Pleistocene and possibly heavy monsoon rains during the Holocene.  相似文献   
70.
The Bou Medfaa earthquake of 7 November 1959 occurred at 2 h 32 min 7 s (GMT); it is one of the most destructive seismic events that central Algeria experienced this century. The main shock, which lasted 8 s in Bou Medfaa, caused only two injuries but made at least 500 homeless; it destroyed or heavily damaged more than 80% of the houses, farms and public buildings in Bou Medfaa and its immediate surroundings. Poor-quality constructions were the main cause of the damage. The total cost of damage was estimated at 300 million French francs. The earthquake was preceded by two slight foreshocks and followed by a series of lower intensity aftershocks. It was associated with slight surface ground fissures in Bou Medfaa. Compilation and detailed study of the contemporary source documents relative to this earthquake have led to the reconstruction of its macroseismic field and thus to the re-assessment of the strength of the ground shaking. Intensities were re-evaluated anew in many sites. Maximum intensity has been re-estimated at I0 = VIII (MSK), assigned to Bou Medfaa, Hammam Righa and their close vicinities, an area about 8 km radius. The shock was felt as far as Dellys 150 km away with intensity III (MSK). From the intensity data, the macroseismic epicentre was located slightly north of Bou Medfaa at 36·41°N, 2·48°E, and an isoseismal map of the main shock has been constructed. The surface-wave magnitude has been calculated, without station corrections, at 4·90 (±0·40). The instrumental epicentre has been relocated, using the present location procedure of the ISC, at 36·38°N, 2·55°E. The analysis of destructive earthquakes provides a fundamental means for the reduction of future seismic catastrophes by suggesting new ways of improving local construction procedures, building materials, strengthening and properly repairing existing structures and implantation of new urban and rural settlements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号